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CHAPTER

ONE

SYSTEM-COMMANDS-COURSE

1.1 Notes from the System Commands course

• Week 1

• Week 2

• Week 3

• Week 4

• Week 5

1.2 Reference Books:

• The Command Line - a complete introduction, by William Shotts. (ISBN: 9781593279523)

• Classic Shell Scripting, by Arnold Robbins & Nelson H.F. Beebe. (ISBN 9788173668463)

1.3 Reference material:

• GNU Bash manual.

• Effective AWK Programming. (GNU AWK Manual)

• GNU Sed: a stream editor. (GNU Sed Manual)

• Git User Manual.

• MM2090 Introduction to Scientific Computing

1.4 Instructors:

1.5 Professor details:

• Prof. Gandham Phanikumar,

– Professor, Dept. of Metallurgical and Materials Engineering, IIT Madras
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1.6 Course Instructors:

• Ankur Parmar(M.Tech(CSE), IIT Bombay)

• Santhana Krishnan(M.tech., Anna University)

• Hariharan V S(Ph.d. (ongoing) , IIT Madras)

• Shreya Smitha ( B.tech, (ongoing), IIT Madras)

• Archish S (B.tech (ongoing), IIT Madras)

1.6.1 Week 1 Notes

Terminal Emulators

• Terminal

• Konsole

• xterm

• guake

Command Prompt

username@hostname:~$

• ~$ is the path

Commands and Flags

username@hostname:~$ uname

• Prints the name, version and other details about the current machine and the operating system running on it

• the -a displays hidden files that have a dot in front of them

username@hostname:~$ pwd

• Present Working Directory

username@hostname:~$ ls

• - a : all . displays hidden files

• - l : use a long listing format

• - i : print index number of each file (inode)

• - s : shows blocks occupied by each file

• - 1 : each file name on a separate line

• output of ls -l : drwxr-xr-x 5 ckg ckg 12288 Nov 25 10:00 Documents (d is file type ; rwxr-xr-x
owner,group,others permissions ; 5 no of hard links ; ckg is owner ; ckg is group ; last modified time stamp ;
filename)
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• ls F* gives a list of all files starting with F

username@hostname:~$ rm

• remove a file

• rm -i prompts before every removal (it can be set using alias rm="rm -i")

• works only with write permission

• use -d for removing directories

• rm -r mydirectory

username@hostname:~$ mv

• move , rename

• mv file1 .. (moves file to parent dir)

• mv file1 file1a (renames file1 to file1a)

username@hostname:~$ ps

• currently running processes

username@hostname:~$ clear

• or ctrl+l

username@hostname:~$ exit

• or ctrl+d

username@hostname:~$ man

• get help on any command in linux. eg : man ls

• man sections (1 to 9) eg : man 1 ls

• 1 - Executable programs or shell commands

• 2 - System calls provided by Kernel

• 3 - Library calls

• 4 - Special files usually found in /dev

• 5 - File formats and conversions

• 6 - Games

• 7 - Misc : macro packages and conventions

• 8 - System admin commands

• 9 - Kernel routines

username@hostname:~$ cd

• change directory eg cd .. - goes to parent directory

• cd without any arguments will take you to the home directory

1.6. Course Instructors: 5
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• cd / takes you to the root folder

• cd - takes you to previous directory

• cd ~ takes you to home directory

username@hostname:~$ cp

• copy command : cp file1 file2

username@hostname:~$ date

• date and time

• date -R gives in RFC 5322 standard (used for email communications)

username@hostname:~$ cal

• calendar of a month

• eg : cal aug 1947

• ncal gives calendar in flipped orientation

username@hostname:~$ free

• memory statistics

• use h flag to make it human readable

username@hostname:~$ groups

• – groups to which a user belongs

username@hostname:~$ file

• what type of file

• -f allows you to pass a file in which file names are separated by lines (ls -1 > files.txt; file -f files.txt)

• file * will give a list of file name and types directly

username@hostname:~$ mkdir

• create a directory

• default permissions (umask)

username@hostname:~$ touch

• used to change the last modified timestamp of a file

• also used to create empty files

username@hostname:~$ chmod

• chmod 777 file.txt

• chmod g-w file.txt (removes write permissions from the group)

• chmod o-x file.txt (removes executable permission from others)

6 Chapter 1. System-Commands-course
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• chmod u-r file.txt (removes read permission from owner)

username@hostname:~$whoami

• prints username

username@hostname:~$ less

• allows you to read a file page by page

username@hostname:~$ ln

• used to create a hard link or a symbolic link (symlink) to an existing file or directory

• s flag is used to create a soft link

• usage : ln file1 file2 ; ln -s file1 file2

username@hostname:~$ cat

• stands for concatinate

• allows you to view the contents of a single file or multiple files (gets concatinated)

File types

• output of ls -l : drwxrwxrwx or lr-x--x--x (l indicates symbolic link and d indicates directory)

• - Regular file

• d Directory

• l Symbolic link

• c Character file (usually found in /dev ; typically the terminal)

• b Block file (usually found in /dev ; typically the hard disk)

• s Socket file

• p named pipe

Viewing and Adding to files

• cat - to view the contents of a file

• writing to a file : > eg : echo "Hello world" > test.txt

• appending to a file : >> eg : echo "Helo world" >> test.txt

1.6. Course Instructors: 7
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Hard links and Soft links

• inode - An entry in the filesystem table about the location in the storage media

• hard link points to the same inode

• soft link points to a hard link

• hard link must be on the same partition while soft link can point to a file at a totally different geographical
location.

• inode is metadata for the file . eg : size ,permissions,blocks etc.

• ls -i <name>

• ln and ln -s is used for creating hard links and soft links

• inode is unique for every file : if there are multiple entries of inode then it means that they are all hard links

– if there is a dir level1 with inode = 18874686

– when you cd into that dir . will also have inode = 18874686

– if i make a dir level2 inside level1 and then cd into level2 .. will have inode = 18874686 (no of hard links
will increase by 1)

– as number of sub directories increases the number of hardlinks also keeps increasing

• users cannot create hard links for directories (level1 to level2 and level2 to level1 will create a back and forth)

Permissions

• Files and directories do not inherit the parent directory permissions

• rwxrwxrwx (777)

– 7 rwx

– 6 rw-

– 5 r-x

– 4 r–

– 3 -wx

– 2 -w-

– 1 –x

• rwx rwx rwx : Owner Group Others

• only owners can change permissions of a file

• Execute permission is required on a directory to cd into it (Even ls and tocuh to a dir will not work)

• If you want to access a file, all its parent direcories should have x permission. This works even without r and w
permissions if you know the path.

• r and w permissions along with x is required to ls a directory or touch a file into a directory

• Removing a file works only if it has write permission

8 Chapter 1. System-Commands-course
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Linux Virtual Machine

ISO

• image of Linux OS (Ubuntu 20.04 LTS for x86_64 platform)

Hypervisor

• (eg: Oracle VirtualBox or VMWare Workstation Player)

• A Hypervisor creates and runs virtual machines

• It allows running multiple operating systems while sharing hardware resources

Command Line Environments

• Cloud - replit and cocalc

• Phone - Termux by Fredrick Fornwall

File System of Linux OS

• Filesystem Hirearchy Standard FHS 3.0 (June 03, 2015) (refspecs.linuxfoundation.org/fhs.shtml)

• / is root directory and field separator or delimiter for sub-directories

• . references the current directory (. is a special file in every directory)

• .. references the parent directory (.. is a special file in every directory)

• Path for traversal can be absolute or relative

• boot directory is where the kernel is located

• /usr/bin contains commands that we will use

• /bin - essential command binaries

• /boot static files of the bootloader

• /dev device files (different character in long format of file listing ‘c’ instead of ‘l’ or ‘d’. ‘c’ indicates character
file - means you can read from it character by character. if first character is ‘b’ they are block devices typically
hdds - the block devices are made available as files.)

• /etc Host specific system configuration (.conf files)

• /lib Essential shared libraries and kernel modules (Typically contain files with version number at the end)

• /media mount points for removable devices

• /mnt mount points

• /opt add on application software packages

• /run Data relevant to running processes

• /sbin essential system binaries

• /srv data for services

• /tmp temporary files (normally flushed when system is rebooted)

1.6. Course Instructors: 9
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• /usr secondary hierarchy

– /usr/bin : user commands

– /usr/lib : libraries

– /usr/local : local hierarchy

– /usr/sbin : non vital system binaries

– /usr/share : architecture dependent data

– /usr/include : header files included by c programs

– /usr/src : source code

• /var variable data (/var/log contains logs for various services)

– /var/cache : Application cache data

– /var/lib : Variable state informtion

– /var/local : variable data for /usr/local

– /var/lock : lock files

– /var/log : log files and directories

– /var/run : data relevant to running processes

– /var/tmp : temporary files preserved between reboots

Shareable Unsharable

static /usr and /opt /etc and /boot
variable /var/mail /var/run and /var/lock

1.6.2 Week 2 Notes

• Multiple uses of / is as good as one

– ie : cd usr//////bin will take you to usr/bin

• The root folder / is its own parent

– ie : if you do cd .. within the root directory you stay in the same directory.

• Options / Flags can be written in multiple combinations

– ls -l level1 -di

– ls -d level1 -il

– ls level1 -ldi

– ls -ldi level1

• long formats for options are also available

• ls -a is equivalent to ls --all

10 Chapter 1. System-Commands-course
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Commands

• ls

– R flag lists all subdirectories recursively

– Passing directory name to ls shows what is within that directory. ie : ls -l level1

– d flag displays details of a folder without traversing inside it. it : ls -ld level1

–

• ll

– a shortcut for the ls -la command

• which

– which command will show the location of the command

– which less will show usr/bin/less

• whatis

– gives a brief description of the command

• alias

– give a nickname to a frequently used command

– usage : alias ll = 'ls -l'

– Just typing alias will show a list of aliases

– alias date = 'date -R'

– If the command is executed by typing the whole path eg : /usr/bin/date the alias is not invoked. (cd
/usr/bin and ./date)

– An alias can be escaped by prefixing a \ ie: \date

• unalias

– used to remove an alias

• rmdir

– removes an empty directory

• ps

– displays current processes

– ps --forest - which process has launched which child process.

– ps -f - displays parent process id

– ps -ef - all the processes running in the operating system now

– PID is the process ID , PPID is the parent process ID.

– PID 1 is /sbin/init

• bc - bench calculator

– exit using Ctrl+D

1.6. Course Instructors: 11
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Commands to know contents of a text file

• less

– displays the content in one screen

– ls -l /usr/bin/less shows that the command takes 180KB

• wc

– prints newline,word and byte counts for the file

– the -l flag shows just the number of lines

• head

– head profile displays the first ten lines

– use -n flag to specify the number of lines

• tail

– tail profile displays the last ten lines

– use -n flag to specify number of lines to be displayed

• cat

– in /etc , cat profile would just dump contents on the screen without any further prompts.

– disadvantages : cant move back and forth to view page by page, can’t come out half way through.

– if the file is very long cat is not the best way to look at the content.

• more

– similar to less. Allows page by page viewing

– ls -l /usr/bin/more shows that the command takes 43KB

Knowing more commands

• man

• which

• apropos

– For a keyword it shows you all the commands which have that keyword in the description

– Used to discover new commands

– If you type ls -l /usr/bin/apropos you see that it is a symbolic link to whatis, but the outputs are
different : Why?

– Reason : In Linux every executable will know in what name it has been invoked - can have different be-
haviour depending on the name that invoked it.

– It also has the same output as man -k : Searching for a keyword

• info

– Allows browsing through commands using the cursor

– Can go back using < or ‘shift’+’,’

• whatis

12 Chapter 1. System-Commands-course
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• help

– displays keywords reserved for the shell being run

• type

– displays what type of command it is

– type type shows that it is a ‘shell built in’ being offered from the shell and not the os

– type ls shows that it is aliased with some option. which ls shows that it is coming from os because there is
an executable available.

Multiple Arguments

•

Recap : Arguments and Options

• Options are enhanced features of the command

• Arguments are specific names of files or directories

• Second arrument behaviour and interpratation of last argument should be seen in the man pages

• Recursion is assumed for mv and not cp

• recursion is assumed for some commands and should be explicitly stated in others

• For copy command recurssion is not assumed

• cp dir1 dir2 need not work. dir1 has 2 files in it.

• cp -r dir1 dir2 works - recurssion is specified explicitly.

• mv dir1 dir3 works - it just renames the directory.

• touch file1 file2 file3 creates all 3 files in one go with identical timestamp.

Links (Hard Links and Soft Links)

• Can determine whether a link is HL or SL by looking at the Inode numbers

– Hard links will have the same inode numbers

– Soft Link will have different inode numbers

– If you delete a certain file using the rm command (rm unlinks the file from the filesystem. the data is still
at the memory location. shred for permanant deletion)

∗ Its hard link will still give you access to the original file data.

∗ Its soft link will not work

• ln -s source destination to create symbolic link. ln -s file1 file2

– file2 is a separate inode entry but it is just a shortcut to file1

– file2 has only 1 hardlink.

• ln source destionation to create a hard link . ln file1 file3

– file1 and file 3 have the same inode number - They are basically the same file.

1.6. Course Instructors: 13
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– file1 and file3 have 2 hard links when we do ls -li

• You can create a Soft Link ln -s ../dir/filex fileSL but creating a hard link using ln ../dir/filex
fileHL will not work.

– the first/source-file parameter is interpreted in the case of hard link creation and not in soft link creation

– In the above example, assume that ../dir/filex does not exist.

– soft links useful in version control systems

File Sizes

• ls -s

– file size appears in the first column

• stat

– in /usr/bin we look at stat znew

– Gives information about the size, how many blocks are being occupied

– Here the size is little more than 4kb

– stat zmore shows that it takes less than one block

• du

– in /usr/bin we look at du znew or du -h znew

– Gives information about the size

– Here the size is displayed as 8.0KB since there is a block overflow.

– This means that files that are smaller than the block size will actually take up a whole block

– du -h zmore shows that it occupies one block - around 4.0K

• Role of block size

– explained in stat and du

In-Memory File Systems

• /proc

– Is an older system

– ls -l will display several zero-size files, even though we can read content from them.

– These are only a representation and not real files on the HDD.

– less cpuinfo - information about the cpu

– cat version - information about the OS. Also accessible using uname -a

– cat meminfo - information about the memory - also free -h

– cat partitions - information about the partitions - also df -h

– The kcore file appears to take huge space - Shows maximum virtual memory that the current linux os is
able to handle. 2^47 or 140 TB

• /sys

14 Chapter 1. System-Commands-course
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– Used from Kernel v2.6 onwards, however information about various processes that are running are still
stored in the /proc directory itself.

– Much more well organised than /proc

– eg : sys/bus/usb/devices/1-1 points to a specific usb device.

• These are directories that are visible in the root folder. They are not on the disk but only in the memory.

• Important system information can be viewed from these directories in a read-only manner.

Shell Variables

• Makes it possible to communicate between 2 processes very efficiently. Need not write and read the filesystem.

• Security Concern : Some information that you write to the filesystem may be visible to other processes.

• Shell variables are available only within the shell or its child processes.

• echo prints strings to screen

– uses space as a delimiter so multiple spaces between words are ignored. For multiple spaces, enclose the
string in quotes.

– can print a multi-line string by using double quotes and not closing it

– ** Difference between ‘ and ” **

– echo $USERNAME and echo "$USERNAME" give the same result but echo '$USERNAME' is not interpreted
to give the value of the shell variable.

– ** Escaping to prevent interpretation **

– echo "username is $USERNAME and host name is \$HOSTNAME"

– Escaping is usefule when you want to pass on the information to a child shell, without it being interpreted
by the shell launching it.

• echo $HOME prints values of variables

– By convention every shell variable starts with a Dollar

• Commonly used shell variables

– $USERNAME eg : echo "User logged into system now is : $USERNAME"

– $HOME

– $HOSTNAME

– $PWD

– $PATH - variable contains a list of directories which will be searched when you type a command. When
ever you type a command the system scans these paths from left to right to see if the command is in the
directory.

• Commands like printenv , env , set to see variables that are already defined

– printenv displays all the shell variables defined in the shell that you are running.

– env gives the same output

– set displays some functions defined to interpret what you are typing on the command line.

• Special Shell Variables

– $0 : name of the shell eg bash or ksh

1.6. Course Instructors: 15
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– $$ : process ID of the shell

– $? : return code of previously run program

– $- : flags set in the bash shell . The man page for bash shows the meaning of the flags.

• Process Control echo $$

– use of & to run a job in the background

– fg - bring process to foreground

– coproc - run a command while also being able to use the shell

– jobs - list programs running in the background

– top - See programs that are hogging the CPU or memory (refreshed every second)

– kill - kill process owned by you

• Program Exit Codes echo $?

– exit code always has a value between 0 and 255

– 0 : Success

– 1 : Failure

– 2 : Misuse (insufficient permissions)

– 126 : command cannot be executed (usually due to insufficient permissions to execute a file)

– 127 : command not found (usually due to command typos)

– 130 : processes killed using control+c

– 137 : processes killed using kill -9 <pid>

– If the exit code is more than 256 then the exitcode%256 will be reported as the exit code

– exit 0 or exit 1 or exit <n> exits with exit code n

– Used when there are command dependencies (ie: run second command only if first command completes
successfully)

• Flags set in bash echo $-

– h : locate hash commands

– B : braceexpansion enabled

– i : interactive mode

– m : job control enabled (can be taken to bg or fg)

– H : !style history substitution enabled

– s : commands are read from stdin

– c : commands are read from arguments

16 Chapter 1. System-Commands-course
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Linux Process Management

• sleep command to create processes

– usage : sleep 3 for 3 seconds

• If you have a command running in the Foreground for a long time but you need to write something else on the
command line :

– kill the process

– suspend the process

– run it in the background coproc sleep 10 - When complete it gives a message.

• coproc is a shell keyword. No manual entry for it.

– To learn more about a shell key word use help coproc

– a running background process can be killed by process id (use : ps --forest to find PID and kill -9
<pid>)

• A command followed by an & means that it is being assigned to the background

– Executing the command fg will bring it back to foreground

• jobs is a shell builtin - it lists active jobs in the current shell

• top shows processes taking up maximum cpu and memory. Exit gracefully by pressing Q

• Ctrl+z suspends a process.

– Suspended processes can be seen with jobs

– Can be brought back to foreground using fg command

• Ctrl+c kills a process

• fg is a shell builtin

• bash -c "echo \$-" creates a child shell, gets the value of echo $-, gives the output to the parent shell

– bash -c "echo \$-; ps --forest;" - multiple commands separated by ;

– bash -c "echo \$$ ; ps --forest ; exit 300" : custom error code mod 256 = 44

• history displays a list of commands that have been run on that computer

– !n executes command line no n displayed by history

– useful for repeating long commands

– The H flag in bash means the history is being recorded

• Brace expansion option B

– if you type echo {a..z} character in the ASCII sequence will be expanded.

– In combination echo {a..d}{a..d} will display all possible combinations of the 2 alphabets.

– * exapnds to all the files in the current directory

– echo D* lists all the files begining with D.

– Examples :

∗ mkdir {1..12}{A..E} or rmdir {1..12}{A..E} or touch {1..12}{A..E}/{1..40}

• ; acts as a separator between individual commands eg : echo hello ; ls

1.6. Course Instructors: 17
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REPLIT CODE WITH US

Link to Replit

• date -d "2024-04-01" +%A - Day of the week for given date

• file --mime-type somefile - mime type of a given file

• mkdir {1..12}{A..E}

• rmdir {1..12}{A..E}

• touch {1..12}{A..E}/{1..40}

• lscpu | grep -i "model name"| cut -d ":" -f "2"

1.6.3 Week 3 Notes

Combining Commands and Files

• Executing Multiple Commands

– command1; command2; command3;

∗ Each command will be executed one after the other.

– command1 && command2

∗ command2 will be executed only if command 1 succeeds

∗ If the return code is 0 it is true and if it is greater than 0 it is false

∗ ls && date -Q && wc -l /etc/profile will display the dir listing followed by error that -Q is
invalid; wc is not executed.

– command1 || command2

∗ command2 will not be executed if command1 succeeds

∗ ls /blah || date will display current date after “No such file or directory”

∗ ls || date will display just the directory listing

∗ command2 is like a Plan B if command1 doesn’t succeed.

– Example ls /blah ; date ; wc -l /etc/profile ;

– If we use parenthesis ie (ls /blah ; date ; wc -l /etc/profile ;) the command gets executed
in a subshell and is returned back to the shell we are using.

– We can use echo $BASH_SUBSHELL to return an integer which tells us at what level of execution we are.

∗ (echo $BASH_SUBSHELL) will report a value of 1

∗ (ls; (date; echo $BASH_SUBSHELL)) will report a value of 2

– Launching too many subshells could be expensive computationally.

• File Descriptors

– Every command in linux has 3 file descriptors - stdin (0) , stdout (1), stderr (2).

∗ stdin is a pointer to a stream that is coming from the keyboard or use input

∗ stdout or stderr usually points to the screen where the display or output is made.

∗ the three pointers are looking at only the stream of characters.

18 Chapter 1. System-Commands-course
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∗ they can be directed to a file or a command, or the default behaviour can be left as it is.

– Combining a command and a file

∗ command > file1

· stdout is redirected to file1

· file1 will be created if it does not exist

· if file1 exists, its contents will be overwritten

· example : ls -1 /usr/bin > file1 - displays no output on the screen because there is no error

· ls -1 /blah > file1 - displays an error. file1 is overwritten and is now 0 Bytes.

· hwinfo > hwinfo.txt

· trying this command in a folder where there is no w permissions will generate an error

· The cat command tries to read from the provided file name if not given it tries to read from stdin
(keyboard)

· cat > file1 will allow you to type content. The feature could be used to create text files on the
command line. You can come out using the Ctrl+D option.

· cat file1 displays the content of file1

· cat takes input from the keyboard and displays it on the screen (line by line; when you press enter)
- Finish by pressing Ctrl+D to signify end of file.

∗ command >> file1

· contents will be appended to file1

· new file1 will be created if it does not exist.

· Example : date >> file2 ; wc -l /etc/profile >> file2 ; file /usr/bin/znew
>> file2 ;

· cat >> file1 to append text to a file from command line. Come out using Ctrl + D

Redirections

• combining command and file (continued ..)

– (contd..)

∗ command 2> file1

· redirects stderr to file1

· file1, if it exists, will be overwritten.

· file1 will be created if it does not exist.

· Example ls $HOME /blah 2> error.txt

∗ command > file1 2> file2

· stdout is redirected to file1

· stderr is redirected to file2

· Contents of file1 and file2 will be overwritten.

· The output is in one file and the errors are in another file.
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· Example : ls $HOME /blah > output.txt 2> error.txt

· ls -R /etc > output.txt 2> error.txt - permission related errors in error.txt

∗ command < file1

· stdin is redirected - a command expecting input from the keyboard could take the input from
a file.

· Example : wc /etc/profile behaves similar to wc < /etc/profile

∗ command > file1 2>&1

· command output will be redirected to file1

· 2> indicates stderr and that is being redirected to &1 (first stream) which is stdout

· contents of file1 will be overwritten

· Example : ls $ HOME /blah > file1 output alone is sent to file1. Error on screen

· Example : ls $ HOME /blah > file1 2>&1 output and error is sent to file1.

∗ command1 | command2 Pipe

· stdout output of command 1 is sent to stdin of command2 as input

· Example ls /usr/bin | wc -l

∗ command1 | command2 > file1

· command1 and command2 are combined and the stdout of command2 is sent to file1. Errors
are still shown on the screen.

· Example ls /usr/bin | wc -l > file1 - file1 has the number of lines counted by wc

∗ command > file1 2> /dev/null

· /dev/null file - A sink for output to be discarded. Like a “black hole”

· We normally don’t do anything with the /dev folder as there are sensitive system files there.

· If you are confident that the script is running well and you do not want to display any error on
the screen, you can redirect the stderr to /dev/null

· stderr is redirected to /dev/null

· Example : ls $HOME /blah > file1 2> /dev/null

· Example : ls -R /etc > file1 2> /dev/null - file1 contains the output except errors

∗ command1 | tee file1

· Used in sitiations where you want to have a copy of the output in a file as well as on the screen.

· The tee command reads from stdin and writes to stdout and file/s.

· Example : ls $HOME | tee file1 also ls $HOME | tee file1 file2 for creating mul-
tiple copies

· diff file1 file2 comapares files line by line

· no output if the files are identical

· Example : ls $HOME /blah | tee file1 file2 | wc -l - Here tee keeps copy of output
in a file and also sends output to wc -l for further processing.

· Example : ls $HOME /blah 2> /dev/null | tee file1 file2 | wc -l to supress er-
rors. Note location of 2> is since the error is generated there.
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Shell Variables - Part 1

• Creation, inspection, modification, lists

• Creating a variable

– myvar="value string"

∗ myvar can’t start with a number, but you can mix alphanumeric and _

∗ No space around the =

∗ "value string" is the number,string or command. Output of a command can be assigned to myvar
by enclosing the command in back-ticks.

• Exporting a variable

– export myvar="value string" or

– myvar="value string" ; export myvar

– This makes the value of the variable available to a shell that is spawned by the current shell.

• Using variable values

– echo $myvar

– echo ${myvar}

∗ can manipulate the value of the variable by inserting some commands within the braces.

– echo "${myvar}_something"

• Removing a variable

– unset myvar

– Removing value of a variable myvar=

• Test is a variable is set

– [[ -v myvar ]] ; echo $?

∗ 0 : success (variable myvar is set)

∗ 1 : failure (variable myvar is not set)

– [[ -z ${myvar+x} ]] ; echo $? (the x can be any string)

∗ 0 : success (variable myvar is not set)

∗ 1 : failure (variable myvar is set)

• Substitute default value

– If the variable myvar is not set, use “default” as its default value

– echo ${myvar:-"default"}

∗ if myvar is set display its value

∗ else display “default”

• Set default value

– If the variable myvar is not set then set “default” as its value

– echo ${myvar:="default"}

∗ if myvar is set display its value
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∗ else set “default” as its value and display its new value

• Reset value if variable is set

– If the variable myvar is set, then set “default” as its value

– echo ${myvar:+"default"}

∗ if myvar is set, then set “default” as its value and display the new value

∗ else display null

• List of variable names

– echo ${!H*}

∗ displays the list of names of shell variables that start with H

• Length of string value

– echo ${#myvar}

∗ Display length of the string value of the variable myvar

∗ if myvar is not set then display 0

• Slice of a string value

– echo ${myvar:5:4} (5 is the offset and 4 is the slice length)

∗ Display 4 characters of the string value of the variable myvar after skipping first 5 characters.

– if the slice length is larget than the length of the string then only what is available in the string will be
displayed.

– the offset can also be negative. However you need to provide a space after the : to avoid confusion with
the earlier usage of the :- symbol. The offset would come from the right hand side of the string.

• Remove matching pattern

– echo ${myvar#pattern} - matches once

– echo ${myvar##pattern} - matches maximum possible

– Whatever is matching the pattern will be removed and the rest of it will be displayed on the screen.

• Keep matching pattern

– echo ${myvar%pattern} - matches once

– echo ${myvar%%pattern} - matches maximum possible

• Replace matching pattern

– echo ${myvar/pattern/string} - match once and replace with string

– echo ${myvar//pattern/string} - match max possible and replace with string

• Replace matching pattern by location

– echo ${myvar/#pattern/string} - match at begining and replace with string

– echo ${myvar/%pattern/string} - match at the end and replace with string

• Changing case

– echo ${myvar,} - Change the first character to lower case.

– echo ${myvar,,} - Change all characters to lower case.

– echo ${myvar^} - Change first character to uppercase
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– echo ${myvar^^} - Change all characters to upper case

– The original value of the variable is not changed. Only the display will be modified as the trigger commands
are within braces.

• Restricting value types

– declare -i myvar - only integers assigned

– declare -l myvar - Only lower case chars assigned

– declare -u myvar - Only upper case chars assigned

– declare -r myvar - Variable is read only

– Once a variable is set as read only you may have to restart the bash to be able to set it

• Removing restrictions

– declare +i myvar - integer restriction removed

– declare +l myvar - lower case chars restriction removed

– declare +u myvar - upper case chars restriction removed

– declare +r myvar - Can’t do once it is read-only

• Indexed arrays

– declare -a arr

∗ Declare arr as an indexed array

– $arr[0]=”value”

∗ Set value of element with index 0 in the array

– echo ${arr[0]}

∗ Value of element with index 0 in the array

– echo ${#arr[@]}

∗ Number of elements in the array. The @ symbol is a wild character to run through all the elements
in the array

– echo ${!arr[@]}

∗ Display all indices used

– echo ${arr[@]}

∗ Display values of all elements of the array

– unset ‘arr[2]’

∗ Delete element with index 2 in the array

– arr+=(“value”)

∗ Append an element with a value to the end of the array

• Associative arrays

– declare -A hash

∗ declare hash as an associative array

– $hash[“a”]=”value”

∗ set the value of element with index a in the array
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– echo ${hash[“a”]}

∗ value of element with index a in the array

– echo ${#hash[@]}

∗ number of elements in the array

– echo ${!hash[@]}

∗ display all indices used

– echo ${hash[@]}

∗ display values of all elements of the array

– unset ‘hash[“a”]’

∗ delete an element with index a in the array

– Can do everything in the indexed array except append because there is nothing called the end of the array
as there is no sequence for the elements of a hash

• Examples

– true always returns exit code 0

– false always returns exit code 1 (Check with echo $?)

– To check whether a variable is present

∗ [[ -v myvar ]] ; echo $? returns 1 if the variable is not present in the memory

∗ [[ -z ${myvar+x} ]] ; echo $? returns 0 if variable is not present and 1 if it is present. x is
a string that will be used as a replacement if the variable was not present.

– Use of Braces

∗ myvar=FileName

∗ echo $myvar

∗ echo "$myvar.txt" prints FileName.txt

∗ echo "$myvar_txt" does not print anything as the variable myvar_txt does not exist

∗ echo "${myvar}_txt" prints Filename_txt

∗ Braces are useful in stating clearly the name of the variable.

∗ Can also be used outside quotes echo ${myvar}

– Does the variable we have created get passed on to the shell or any other program created within the shell

∗ myvar=3.14 ; echo $myvar

∗ bash one more level of bash

∗ ps --forest to show that we are one level below

∗ echo $myvar not present

∗ Use export myvar=3.14 to ensure this variable is available to all spawned sub shells.

∗ Change value of variable within the child shell

∗ modification of value is not reflected in the value of the variable in the parent shell

∗ even if you do export of the variable within the child shell it will not change the value within the
parent shell.
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– Use of back-ticks

∗ mydate=`date` value of mydate will be output of date.

∗ mydate=`echo Sunday that is today` ; echo $mydate

– Manipulations for variables within the shell environment

∗ We would like to have echo display a default value if variable is not available

∗ echo ${myvar:-hello} the - indicates if the value is not present what is the display value

∗ echo ${myvar:-"myvar is not set"}

∗ Set the value if it was not set already

∗ echo ${myvar:=hello} if absent / not set then set it to the value after =

∗ If it is present it will not change

∗ echo ${myvar:?"myvar is not set"} displays a little more information and a debug message.
bash: myvar: myvar is not set

∗ Unset the value of a variable using unset myvar

∗ echo ${myvar:+HELLO} displays the message if the variable is present

– Inspecting all the variables in the shell environment

∗ printenv

∗ env

∗ echo ${!H*} displays the names of variables begining with ‘H’ - ! indicates names of the variables
instead of value.

– Counting characters

∗ mydate=`date` stores the output of the date command in mydate

∗ echo ${#mydate} prints the length of the value present in mydate.

∗ length of a non-existing variable is zero

– Features of using colon : within braces {}

∗ Extracting part of a string from the value of a particular variable.

· echo ${mydate:6:10}

· echo ${myvar:3:3} will print def for myvar=abcdefg ie: 3 characters after the offset (po-
sition 3)

∗ Using negative offset

· echo ${myvar: -3:3} and echo ${myvar: -3:4} will print efg for myvar=abcdefg

· note - is to be preceeded with a blank to avoid confusion

· asking for more characters, will print just what is available

· echo ${myvar: -3:2} will print ef for myvar=abcdefg

∗ Extracting a portion of the date

· Output of date is Tuesday 25 January 2022 09:10:20 PM IST

· Output of date +"%d %B %Y" is 25 January 2022

· if mydate=`date` then echo ${mydate:8:16} will also print 25 January 2022
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∗ Extracting patterns from a string

· myvar=filename.txt.jpg

· echo ${myvar#*.} minimal matching displays txt.jpg

· myvar=filename.somethingelse.jpeg

· echo ${myvar##*.} maximal matching displays jpeg

· echo ${myvar%*.} displays filename.somethingelse

· the % is used to indicate what has not been matched. (minimal)

· echo ${myvar%%*.} displays filename

· the % is used to indicate what has not been matched. (maximal)

· Can be combined echo ${myvar%%.*}.${myvar##*.} to get filename.jpeg

∗ Replacing what has been matched

∗ Pattern matching in Linux usually goes with a pair of forward slashes.

∗ Convert all e to E in a string

· echo ${myvar/e/E} replaces only the first occurance of e

· echo ${myvar//e/E} replaces all occurances of e

∗ Replace characters at the begining of a string

· echo ${myvar/#f/F} replaces the occurance of f in the begining of the string with F. The
# indicates the begining of the string

∗ Replace characters at the end of a string

· echo ${myvar/%g/G} replaces the occurance of g at the end of the string with G. The %
indicates the end of the string.

∗ Replace jpeg with jpg, only if it is at the end of a string

· echo ${myvar/%jpeg/jpg}

∗ Modifying and storing it in a variable

· myvar1=`echo ${myvar//jpeg/jpg}`

∗ Generic command to remove day from date

· echo ${mydate#*day}

∗ Upper case to lower case and vice-versa

· echo ${mydate,} changes first character to lowercase

· echo ${mydate,,} converts all characters to lowercase

· echo ${mydate^} changes first character to uppercase

· echo ${mydate^^} changes all characters to uppercase

∗ Restricting values that can be assigned to shell variables using declare

· declare is a shell builtin

· + to unset a restriction and - to set it (Note : counterintutuve )

· -a for indexed arrays (need not be ordered indexes)

· -A for associative arrays (dictionaries)
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· -i for integers

· -u for uppercase conversion on assignment

· Integer restriction

· declare -i mynum

· mynum=10 will assign 10 to mynum

· mynum=hello will assign 0 to mynum

· lowercase restriciton

· declare -l myvar

· myvar=hello assigns hello to myvar

· myvar=BELLOW converts BELLOW to lowercase and assigns it to myvar.

· removing a restriction

· declare +l myvar

· the value is still contained after removing the restriction but you can now store upper case
characters as well

· declaring a read-only variable

· declare -r myvar

· once a variable has been set as read only, you cannot change its value and you cannot remove
the read-only restriction using +r

· declare +r myvar gives the error bash: declare: myvar: readonly variable

∗ Arrays

· declare -a arr

· arr[0]=Sunday

· arr[1]=Monday

· echo ${arr[0]}

· echo ${arr[1]}

· echo ${#arr[@]} gives number of elements in the array

· echo ${arr[@]} displays all values

· echo ${!arr[@]} displays the indices`

· You can have any index without filling up intermediate indices. Indices are not necessarily
contiguous.

· arr[100]=Friday is also valid

· Removing an element from an array = unset 'arr[100]'

· Appending to an array arr+=(Tuesday)

· Populating an array in one go arr=(Sunday Monday Tuesday) . The indices are sequential

∗ Associative Arrays / Hashes

· declare -A hash

· hash[0]="Amal"
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· hash["mm12b001"]="Charlie"

· echo ${!hash[@]} to get indices

· echo ${hash["mm12b001"]}

∗ File names in a shell variable

· myfiles=(`ls`)

· echo ${myfiles[@]}

1.6.4 Week 4 Notes

Software Management

• Using Package Management Systems

– Tools for installing, updating, removing and managing software

– Install new / updated software across network

– Package - File look up, both ways

∗ Which files are given by a particular package and which package contains a given file

– Database of packages on the system including versions (compatibility and requirements)

– Dependency checking

– Signature verification tools (to check authenticity of source of the software)

– Tools for building packages (to build packages from soure code - particularly true for kernel modules)

• Package types

– Package

∗ RPM

· Red Hat

· CentOS

· Fedora

· Oracle Linux

· SUSE Enterprise Linux

· OpenSUSE

∗ DEB

· Debian

· Ubuntu

· Mint

· Knoppix

• Commands

– lsb_release -a to find version of Operating System

– When searching for packages for this version of the OS you can search by OS code name eg: focal
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• Architectures

– amd64 | x86_64

– i386 | x86

– arm (RISC5 Sakthi)

– ppc64el | OpenPOWER

– all | noarch |src (not tied to any architecture)

• Commands

– uname -a gives the kernel version and the type of architecture.

• Tools

– Package Type

∗ RPM

· Yellowdog Updater Modifier (yum)

· Red Hat Package Manager (rpm)

· Dandified YUM (dnf)

∗ DEB

· synaptic (GUI)

· aptitude (Command Line)

· Advanced Package Tool (apt)

· dpkg

· dpkg-deb

• Package managemet in Ubuntu using apt

– Inquiring package db

∗ Search packages for a keyword

· apt-cache search keyword

∗ List all packages

· apt-cache pkgnames

· apt-cache pkgnames | sort | less for page by page sorted display

· apt-cache pkgnames nm for all packages starting with nm

∗ Display package records of a package

· apt-cache show -a package

• Package Names

– Package

∗ RPM

· package-version-release.architecture.rpm

∗ DEB

· package_version-revision_architecture.deb
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· eg : pool/universe/n/nmap/nmap_7.80+dfsg1-2build1_amd64.deb

• Package Priorities

– required : essential to proper functioning of the system

– important : provides functionality that enables the system to run well

– standard : included in a standard system installation

– optional : can omit if you do not have enough storage

– extra : could conflict with packages with higher priority, has specialized requirements, install only if
needed.

– Priority is displayed as extra in the output of apt-cache show nmap or apt-cache show wget for
example.

• Package Sections

– Package Sections for Ubuntu focal

– apt-cache show fortunes shows Section : universe/games

• Checksums

– For a small change in the original file the checksum is very different. This is useful to chack if the original
file has been tampered or not.

– Can be used to verify that nothing has gone wrong to the contents of the file while downloading.

– md5sum

∗ 128 bit string

∗ md5sum filename

– SHA1

∗ 160 bit string

∗ sha1sum filename

– SHA256

∗ 256 bit string

∗ sha256sum filename

4.2

• Who can install packages in Linux OS ?

– administrators

– sudoers in the case of Ubuntu

– Only sudoers can install/upgrade/remove packages

– a sudo command can be executed by those who are listed in /etc/sudoers

– Command sudo cat /etc/sudoers . If the current $USER is not in the sudoers file the incident will be
reported.

– In the file the users listed under # User privilege specification have sudo permission.

– sudo attempts and authentication failures get recorded in /var/log/auth.log. View using sudo tail
-n 100 /var/log/auth.log
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• When installing a package the system knows the website/server from which the packages have to be downloaded

– This information is stored in the folder /etc/apt

– Uncommented lines in the file sources.list have the debian/ubuntu sources

– A directory sources.list.d stores sources for third party software. Allows apt update to know new
versions to download from repositories stored in these files

– Synchronize package overview files - sudo apt-get update fetches updates and keeps them in cache

– Upgrade all installed packages - sudo apt-get upgrade upgrades the packages. It lists how many up-
dates are going to be affected and how much data is going to be downloaded.

– sudo apt autoremove to remove unused packages that were earlier installed to satisfy a particular de-
pendency but are not needed now.

– Install a package - sudo apt-get install packagename

– sudo apt-get remove packagename to remove a particular package

– sudo apt-get reinstall packagename to fix problems caused by accedential file deletions.

– Clean local repository of retreived package files - apt-get clean

– Purge package files from the system - apt-get purge package

• Package management in Ubuntu using dpkg

– Allows installation directly from a .deb file. Package management at a lower level.

– /var/lib/dpkg has some information about the packages

∗ Files - arch,available,status

· cat arch displays the architectures for which packages have been installed on the system -
amd64,i386

· less available displays list of packages with info.

· less status displays if a particular package is installed or not

∗ Folder - info

· contains a set of files for each of the packages that have been installed

· ls wget* will give files with information about wget

· more wget.conffilesgives location of configuration file

· more wget.list displays list of files that would get installed on the system with the package

· more wget.md4sums displays the listof md5sums of the installed files. (Used to catch tam-
pering)

• Using dpkg

– List all packages whose names match the pattern

∗ dpkg -l pattern

– List installed files that came from packages

∗ dpkg -L package

– Display/Report the status of packages

∗ dpkg -s package

– Search installed packages for a file
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∗ dpkg -S pattern

∗ eg : dpkg -S /usr/bin/perl shows the package from which the executable has come. ie :
perl-base

– To query the dpkg database about all the packages - dpkg-query

∗ Example dpkg-query -W -f='${Section} ${binary:Package}\n' | sort | less

∗ Example where output is filtered dpkg-query -W -f='${Section} ${binary:Package}\n'
| grep shells

• Installing a deb package

– dpkg -i package_version-revision_architecture.deb

– not a good idea since it may have some dependencies that will have to be taken care of manually

– Do not download deb files from unknown sources and install it on the system

– By default use package management pointing to a reliable repository

– Uninstalling packages using dpkg is NOT recommended. You may be removing a package that is required
by many other packages.

• When compatibility issues cannot be resloved one can use snap or docker as alternatives when you are unable
to install a particular version of a package.

4.3

Pattern Matching

• Regular Expressions regex and grep commands

– POSIX standard

∗ IEEE 1003.1-2001 IEEE Standard for IEEE Information Technology – Portable Operating System
Interface (POSIX(TM))

∗ Refer

– POSIX defines regular expressions to be of 2 different types - Basic and Extended.

• Regex

– regex is a pattern template to filter text

– BRE: POSIX Basic Regular Expression engine

– ERE: POSIX Extended Regular Expression engine

• Why learn regex?

– PRocess some input from the user or perform some string operations.

– Languages: Java, Perl, Python, Ruby, . . .

– Tools: grep, sed, awk, . . .

– Applications: MySQL, PostgreSQL, . . .

• Usage

– grep ‘pattern’ filename - to operate on every line in the file

– command | grep ‘pattern’
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∗ the grep command operates line after line. A common feature in many utilities in linux.

∗ enclose pattern in single quotes

– Default engine: BRE

– Switch to use ERE in 2 ways:

∗ egrep ‘pattern’ filename

∗ grep -E ‘pattern’ filename

Special characters (BRE & ERE)

Character Description
. Any single character except null or newline
* Zero or more of the preceding character / expression
[] Any of the enclosed characters; hyphen (-) indicates character range
^ Anchor for beginning of line or negation of enclosed characters
$ Anchor for end of line
\ Escape special characters

Special characters (BRE)

Character Description
\{n,m\} Range of occurances of preceding pattern at least n and utmost m times
\( \) Grouping of regular expressions

Special characters (ERE)

Character Description
{n,m} Range of occurances of preceding pattern at least n and utmost m times
() Grouping of regular expressions
+ One or more of preceding character / expression
? Zero or one of preceding character / expression
| Logical OR over the patterns
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Character Classes

Class Description
[[:print:]] Printable
[[:alnum:]] Alphanumeric
[[:alpha:]] Alphabetic
[[:lower:]] Lower case
[[:upper:]] Upper case
[[:digit:]] Decimal digits
[[:blank:]] Space / Tab
[[:space:]] Whitespace
[[:punct:]] Punctuation
[[:xdigit:]] Hexadecimal
[[:graph:]] Non-space
[[:cntrl:]] Control characters

Backreferences - \1 through \9 - \n matches whatever was matched by nth earlier paranthesized subexpression - A
line with two occurances of hello will be matched using: \(hello\).*\1

BRE operator precedence

Highest to Lowest
[..] [==] [::] char collation
\metachar
[ ] Bracket expansion
( ) \n subexpresions and backreferences
* { } Repetition of preceding single char regex
Concatenation
^ $ anchors

ERE operator precedence

Highest to Lowest
[..] [==] [::] char collation
\metachar
[ ] Bracket expansion
( ) grouping
* + ? { } Repetition of preceding regex
Concatenation
^ $ anchors
| alternation
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Examples using grep

- [Example File names.txt (Containing Names/Roll-No)](Example_Files/names.txt)
- Basic use

- `grep 'Raman' names.txt` matches line with Raman Singh
- `cat names.txt | grep 'ai'` matches line with Snail

- Usage of `.`
- `cat names.txt | grep 'S.n'` matches lines with Singh and Sankaran

- Usage of `$`
- `cat names.txt | grep '.am$' ` matches lines that end with xam

- Escaping a `.`
- `cat names.txt | grep '\.'` matches lines that have a `.`

- Using anchors at the begining
- `cat names.txt | grep '^M'` matches lines begining with m

- Case insensitive matching with the `i` flag
- `cat names.txt | grep -i '^e'` matches lines begining with e or E.

- Word boundaries `\b`
- `cat names.txt | grep 'am\b'` matches lines with words that end with 'am'

- Use of square brackets `[]` to give options
- `cat names.txt | grep 'M[ME]'` matches lines containing 'MM' or 'ME'
- `cat names.txt | grep '\bS.*[mn]'` matches lines containing words begining␣

→˓with S and ending with m or n.
- `cat names.txt | grep '[aeiou][aeiou]'` matches lines that have 2 vowels side␣

→˓by side
- `cat names.txt | grep 'B90[1-4]'` matches words begining with B90 and ending␣

→˓with range 1-4.
- `cat names.txt | grep 'B90[^1-4]'` matches words begining with B90 and ending␣

→˓with characters other than the range 1-4. A hat inside square brackets implies negation
- Specifying occurances using escaped braces

- `cat names.txt | grep 'M\{2\}'` matches lines which have 'MM'
- `cat names.txt | grep 'M\{1,2\}'` matches lines which have one or 2 'M's

- Grouping patterns that are matched using parenthesis. Repeating whatever is matched␣
→˓by using `\1`

- `cat names.txt | grep '\(ma\)'` matches lines containing 'ma'
- `cat names.txt | grep '\(ma\).*\1'` matches a pattern begining with 'ma' and␣

→˓ending with 'ma' eg: U'mair Ahma'd. The `\1` back-references the first parenthesis.
- `cat names.txt | grep '\(.a\).*\1'` matches a pattern like 'Mary Ma'nickam
- `cat names.txt | grep '\(a.\)\{3\}'` matches a pattern like S'agayam'

- Using Extended Regular Expression Engine
- `cat names.txt | egrep 'M+'` will match lines where M occures one or more␣

→˓times.
- `cat names.txt | egrep '^M+'` will match lines where M occures one or more␣

→˓times at the begining of a line.
- `cat names.txt | egrep '^M*'`

- `cat names.txt | egrep '^M*a'` matches lines where 'M' may or may not␣
→˓occur followed by 'a'

- `cat names.txt | egrep '^M.*a'` matches lines where 'M' has to occur␣
→˓at the begining of a line followed by any number of characters and ending with 'a'

- Watch out for the interpretation of `*`
- `cat names.txt | egrep '(ma)+'` 'ma' could occur one or more times.
- `cat names.txt | egrep '(ma)*'` 'ma' could occur zero or more times.

- Use of pipe as an alternation between 2 patterns of strings to be matched
- `cat names.txt | egrep '(ED|ME)'` matches lines containing 'ED' or 'ME'

(continues on next page)
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- `cat names.txt | egrep '(Anu|Raman)'` matches lines containing 'Anu' or
→˓'Raman'. Length of string on both sides of pipe need not be the same.

- `cat names.txt | egrep '(am|an)$'` matches lines containing 'am' or 'an' at␣
→˓the end.

4.4

More Examples using grep and egrep

- Get package names that are exactly 4 characters long
- `dpkg-query -W -f'${Section} ${binary:Package}\n' | egrep ' .{4}$'`

- Get package names that are from the math section
- `dpkg-query -W -f'${Section} ${binary:Package}\n' | egrep '^math'`

- [Example File chartype.txt (Containing few lines with control character)](Example_
→˓Files/chartype.txt)

- control character inserted using `echo $'\cc' >> chartype.txt`
- get lines that have an alphanumeric character at the begining of the line

- `cat chartype.txt | grep '^[[:alnum:]]'`
- get lines that have digits at the end of the line

- `cat chartype.txt | grep '[[:digit:]]$'`
- get lines that have a ctrl character

- `cat chartype.txt | grep '[[:ctrl:]]'`
- `cat chartype.txt | grep -v '[[:ctrl:]]'` will show the reverse including the␣

→˓empty lines
- get lines that do not have a ctrl character

- `cat chartype.txt | grep '[^[:ctrl:]]'` (This does not work as intended)
- get lines that have printable characters (exclude blank lines)

- `cat chartype.txt | grep '[[:print:]]'`
- get lines that have blank space characters (exclude blank lines)

- `cat chartype.txt | grep '[[:blank:]]'`
- `[[:graph:]]` is used to match any non space character
- To skip blank lines

- `cat chartypes.txt | egrep -v '^$'` Here `-v` excludes and `'^$'` captures␣
→˓empty lines
- Identify a line with a 12 digit number

- `egrep '[[:digit:]]{12}' patterns.txt`
- Identify a line with a 6 digit number (Use word boundaries)

- `egrep '\b[[:digit:]]{6}\b' patterns.txt`
- Match lines containing Roll Number of the form MM22B001

- `egrep '\b[[:alpha:]]{2}[[:digit:]]{2}[[:alpha:]][[:digit:]]{3}\b' patterns.
→˓txt`
- Match urls without the http

- `egrep '\b[[:alnum:]]+\.[[:alnum:]]+\b' patterns.txt`
- **Trimming text**

- top to bottom using `head` and `tail`
- sidways or horizontal trimming of lines using `cut`

- `cut -c 1-4 fields.txt` displays only first 4 characters. Can also use␣
→˓`-4` for begining to 4th place or `2-` to cut from 2nd place to end.

- `cat fields.txt | cut -d " " -f 1` - This uses " " as a delimiter `-d`␣
→˓and prints only the first field `-f 1`

(continues on next page)
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- `cat fields.txt | cut -d ' ' -f 1-2` - to get both fields
- Capture `hello world` from `1234;hello world,line 1`

- `cat fields.txt | cut -d ';' -f 2 | cut -d "," -f 1`
- `egrep ';.*,' fields.txt` (To trim pass the output of grep to␣

→˓`sed`)
- Combining this with top to bottom trimming

- `cat fields.txt | cut -d ';' -f 2 | cut -d "," -f 1 | head -n␣
→˓2 | tail -n 1`

Own experiments using regex

- Get strictly alphanumeric words
- `cat test.txt | egrep '\b([a-z]+[0-9]+|[0-9]+[a-z]+)\b'`

REPLIT Code with Us session

- Getting files with a specific permission pattern from a file
- `cat lsinfo.txt | grep 'rw-r--r--' ;`

- Get all files excluding directories in lsinfo.txt whose last modified date is in␣
→˓January

- `cat lsinfo.txt | grep '^[^d].*Jan'`
- To count the number of lines that starts with a capital letter and contains the word␣
→˓it (case-sensitive)

- `cat twocities.txt | grep -c '^[[:upper:]].*\bit\b' `
- to display all the lines that does not contain the word "we" in it

- `cat twocities.txt | egrep -v '\bwe\b'`
- using cut to display only the countries and its capitals of file.txt in the format␣
→˓Country, Capital (eg in file.txt : India, New Delhi; Asia)

- `cat file.txt | cut -d ';' -f 1 `
- all the countries in the file file.txt sorted alphabetically by name in reverse order

- `cat file.txt | cut -d ',' -f 1 | sort -r`
- cut command to extract the continents (including the one white space in the beginning)␣
→˓of the first 5 lines of file.txt and store it in another file named continent.txt

- `head -n 5 file.txt | cut -d ';' -f 2 > continent.txt `
- list the names of all the c++ files in the current directory which contains a line␣
→˓such that the line starts with the string void main() and ends with the character {.␣
→˓There should be one or more spaces/tabs between the characters { and ).

- `egrep '^void[[:space:]]main\(\)[[:space:]]+{$' *.cpp | cut -d '.' -f 1`
- `grep '^void[[:space:]]main()[[:space:]][[:space:]]*{$' *.cpp | cut -d '.' -f␣

→˓1`
- print the count of these files in the following line

- `egrep -l '^void[[:space:]]main\(\)[[:space:]]+{$' *.cpp |tee /dev/tty | wc -l␣
→˓`

- `|tee /dev/tty` is used to print the output to terminal and also pipe the␣
→˓output to the next command.

- `-l` flag for `grep` and `egrep` prints the name of each input file that␣
→˓matches
- command to list all the packages installed on your machine and their versions in the␣
→˓format Package Version in a sorted manner

(continues on next page)
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- `dpkg-query -W -f='${Package} ${Version}\n' | sort`

1.6.5 Week 5 Notes

Command Line Editors

• Working with text files in the terminal

• Editors

– Line Editors (Present in almost every flavour of UNIX / GNU Linux)

∗ ed

∗ ex (improved version of ed)

– Terminal Editors

∗ pico (Came along with the pine email application)

· nano (Features added to pico)

∗ vi (most popular and complex)

∗ emacs

– GUI Editors

∗ KDE

· kate

· kwrite

∗ GNOME

· gedit

∗ sublime

∗ atom (popular among github users)

∗ brackets (Popular for those writing html code)

– IDE

∗ eclipse

∗ Bluefish

∗ NetBeans

• Features of text editors

– Scrolling , view modes, current position in file

– Navigation (char,word,line,pattern)

– Insert, Replace, Delete

– Cut-Copy-Paste

– Search-Replace

– Language-aware syntax highlighting
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– Key-maps, init scripts, macros

– Plugins

– Both vi and emacs editors satisfy all the above requirements

ed commands

Action Command
Show the Prompt P
Command Format [addr[,addr]]cmd[params]
Commands for location 2 . $ % + - , ; /RE/
Commands for editing f p a c d i j s m u
Execute a Shell command !command
edit a file e filename
read file contents into buffer r filename
read command output into buffer r !command
write buffer to filename w filename
quit q

Using ed

• man ed doesn’t give much info . Use info ed

• ed test.txt shows a number indicating number of bytes read into memory

• 1 displays the first line

• $ displays the last line

• ,p and %p shows the contents of the entire buffer

• 2,3p range - 2nd to 3rd line

• /hello/ matches and shows first occurance of the pattern

• + and - to scroll by line

• ;p from current position to end of buffer

• . displays the current line

• !date running the date command within ed

• r !date read output of date command to buffer at current position

• w writes the file (saves it)

• d delete current line

• a to append after current line. Press . and enter when done

• s/appended/Appended/ Substitute - Search and replace from current line.

• f shows the name of the file being edited

• p shows the contents of the current line

• j for joining lines . Usage 5,6j to join line 5 and 6
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• m to move a line to a particular position. Usage m1 to move current line to just below line 1. m0 to move it right
to the top

• u to undo previous change

• To add something to every line %s/\(.*\)/PREFIX \1/

– \1 is the back substitution

– \(.*\) indicates any character that can be matched

– PREFIX is the replacement string

• 3,5s/PREFIX/prefix/ substitutes prefix for PREFIX from line 3 to 5

Commands for editing in ed / ex

Command Action
f show name of f ile being edited
p print the current line
a append at the current line
c change the line
d delete the current line
i insert line at the current position
j join lines
s search for regex pattern
m move current line to position
u undo latest change

1.6.6 Command Line Editors

• nano

• vi

• emacs

1.6.7 Example files used in the lectures

• Week 4

– Lecture 4.3 - names.txt

– Lecture 4.4 - chartype.txt

Note : To download these files to your local system right click on ‘Raw’ and then select ‘Save link as’
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