
System-Commands
Release 0.0.1

jebah

Feb 19, 2022

CONTENTS:

1 System-Commands-course 3
1.1 Notes from the System Commands course . 3
1.2 Reference Books: . 3
1.3 Reference material: . 3
1.4 Instructors: . 3
1.5 Professor details: . 3
1.6 Course Instructors: . 4

1.6.1 Week 1 Notes . 4
1.6.2 Week 2 Notes . 10
1.6.3 Week 3 Notes . 18
1.6.4 Week 4 Notes . 28
1.6.5 Week 5 Notes . 38
1.6.6 Command Line Editors . 40
1.6.7 Example files used in the lectures . 40

i

ii

System-Commands, Release 0.0.1

Warning: This is under heavy development

CONTENTS: 1

System-Commands, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

SYSTEM-COMMANDS-COURSE

1.1 Notes from the System Commands course

• Week 1

• Week 2

• Week 3

• Week 4

• Week 5

1.2 Reference Books:

• The Command Line - a complete introduction, by William Shotts. (ISBN: 9781593279523)

• Classic Shell Scripting, by Arnold Robbins & Nelson H.F. Beebe. (ISBN 9788173668463)

1.3 Reference material:

• GNU Bash manual.

• Effective AWK Programming. (GNU AWK Manual)

• GNU Sed: a stream editor. (GNU Sed Manual)

• Git User Manual.

• MM2090 Introduction to Scientific Computing

1.4 Instructors:

1.5 Professor details:

• Prof. Gandham Phanikumar,

– Professor, Dept. of Metallurgical and Materials Engineering, IIT Madras

3

https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/sed/manual/
https://git-scm.com/docs/user-manual
https://github.com/gphanikumar/mm2090

System-Commands, Release 0.0.1

1.6 Course Instructors:

• Ankur Parmar(M.Tech(CSE), IIT Bombay)

• Santhana Krishnan(M.tech., Anna University)

• Hariharan V S(Ph.d. (ongoing) , IIT Madras)

• Shreya Smitha (B.tech, (ongoing), IIT Madras)

• Archish S (B.tech (ongoing), IIT Madras)

1.6.1 Week 1 Notes

Terminal Emulators

• Terminal

• Konsole

• xterm

• guake

Command Prompt

username@hostname:~$

• ~$ is the path

Commands and Flags

username@hostname:~$ uname

• Prints the name, version and other details about the current machine and the operating system running on it

• the -a displays hidden files that have a dot in front of them

username@hostname:~$ pwd

• Present Working Directory

username@hostname:~$ ls

• - a : all . displays hidden files

• - l : use a long listing format

• - i : print index number of each file (inode)

• - s : shows blocks occupied by each file

• - 1 : each file name on a separate line

• output of ls -l : drwxr-xr-x 5 ckg ckg 12288 Nov 25 10:00 Documents (d is file type ; rwxr-xr-x
owner,group,others permissions ; 5 no of hard links ; ckg is owner ; ckg is group ; last modified time stamp ;
filename)

4 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

• ls F* gives a list of all files starting with F

username@hostname:~$ rm

• remove a file

• rm -i prompts before every removal (it can be set using alias rm="rm -i")

• works only with write permission

• use -d for removing directories

• rm -r mydirectory

username@hostname:~$ mv

• move , rename

• mv file1 .. (moves file to parent dir)

• mv file1 file1a (renames file1 to file1a)

username@hostname:~$ ps

• currently running processes

username@hostname:~$ clear

• or ctrl+l

username@hostname:~$ exit

• or ctrl+d

username@hostname:~$ man

• get help on any command in linux. eg : man ls

• man sections (1 to 9) eg : man 1 ls

• 1 - Executable programs or shell commands

• 2 - System calls provided by Kernel

• 3 - Library calls

• 4 - Special files usually found in /dev

• 5 - File formats and conversions

• 6 - Games

• 7 - Misc : macro packages and conventions

• 8 - System admin commands

• 9 - Kernel routines

username@hostname:~$ cd

• change directory eg cd .. - goes to parent directory

• cd without any arguments will take you to the home directory

1.6. Course Instructors: 5

System-Commands, Release 0.0.1

• cd / takes you to the root folder

• cd - takes you to previous directory

• cd ~ takes you to home directory

username@hostname:~$ cp

• copy command : cp file1 file2

username@hostname:~$ date

• date and time

• date -R gives in RFC 5322 standard (used for email communications)

username@hostname:~$ cal

• calendar of a month

• eg : cal aug 1947

• ncal gives calendar in flipped orientation

username@hostname:~$ free

• memory statistics

• use h flag to make it human readable

username@hostname:~$ groups

• – groups to which a user belongs

username@hostname:~$ file

• what type of file

• -f allows you to pass a file in which file names are separated by lines (ls -1 > files.txt; file -f files.txt)

• file * will give a list of file name and types directly

username@hostname:~$ mkdir

• create a directory

• default permissions (umask)

username@hostname:~$ touch

• used to change the last modified timestamp of a file

• also used to create empty files

username@hostname:~$ chmod

• chmod 777 file.txt

• chmod g-w file.txt (removes write permissions from the group)

• chmod o-x file.txt (removes executable permission from others)

6 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

• chmod u-r file.txt (removes read permission from owner)

username@hostname:~$whoami

• prints username

username@hostname:~$ less

• allows you to read a file page by page

username@hostname:~$ ln

• used to create a hard link or a symbolic link (symlink) to an existing file or directory

• s flag is used to create a soft link

• usage : ln file1 file2 ; ln -s file1 file2

username@hostname:~$ cat

• stands for concatinate

• allows you to view the contents of a single file or multiple files (gets concatinated)

File types

• output of ls -l : drwxrwxrwx or lr-x--x--x (l indicates symbolic link and d indicates directory)

• - Regular file

• d Directory

• l Symbolic link

• c Character file (usually found in /dev ; typically the terminal)

• b Block file (usually found in /dev ; typically the hard disk)

• s Socket file

• p named pipe

Viewing and Adding to files

• cat - to view the contents of a file

• writing to a file : > eg : echo "Hello world" > test.txt

• appending to a file : >> eg : echo "Helo world" >> test.txt

1.6. Course Instructors: 7

System-Commands, Release 0.0.1

Hard links and Soft links

• inode - An entry in the filesystem table about the location in the storage media

• hard link points to the same inode

• soft link points to a hard link

• hard link must be on the same partition while soft link can point to a file at a totally different geographical
location.

• inode is metadata for the file . eg : size ,permissions,blocks etc.

• ls -i <name>

• ln and ln -s is used for creating hard links and soft links

• inode is unique for every file : if there are multiple entries of inode then it means that they are all hard links

– if there is a dir level1 with inode = 18874686

– when you cd into that dir . will also have inode = 18874686

– if i make a dir level2 inside level1 and then cd into level2 .. will have inode = 18874686 (no of hard links
will increase by 1)

– as number of sub directories increases the number of hardlinks also keeps increasing

• users cannot create hard links for directories (level1 to level2 and level2 to level1 will create a back and forth)

Permissions

• Files and directories do not inherit the parent directory permissions

• rwxrwxrwx (777)

– 7 rwx

– 6 rw-

– 5 r-x

– 4 r–

– 3 -wx

– 2 -w-

– 1 –x

• rwx rwx rwx : Owner Group Others

• only owners can change permissions of a file

• Execute permission is required on a directory to cd into it (Even ls and tocuh to a dir will not work)

• If you want to access a file, all its parent direcories should have x permission. This works even without r and w
permissions if you know the path.

• r and w permissions along with x is required to ls a directory or touch a file into a directory

• Removing a file works only if it has write permission

8 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

Linux Virtual Machine

ISO

• image of Linux OS (Ubuntu 20.04 LTS for x86_64 platform)

Hypervisor

• (eg: Oracle VirtualBox or VMWare Workstation Player)

• A Hypervisor creates and runs virtual machines

• It allows running multiple operating systems while sharing hardware resources

Command Line Environments

• Cloud - replit and cocalc

• Phone - Termux by Fredrick Fornwall

File System of Linux OS

• Filesystem Hirearchy Standard FHS 3.0 (June 03, 2015) (refspecs.linuxfoundation.org/fhs.shtml)

• / is root directory and field separator or delimiter for sub-directories

• . references the current directory (. is a special file in every directory)

• .. references the parent directory (.. is a special file in every directory)

• Path for traversal can be absolute or relative

• boot directory is where the kernel is located

• /usr/bin contains commands that we will use

• /bin - essential command binaries

• /boot static files of the bootloader

• /dev device files (different character in long format of file listing ‘c’ instead of ‘l’ or ‘d’. ‘c’ indicates character
file - means you can read from it character by character. if first character is ‘b’ they are block devices typically
hdds - the block devices are made available as files.)

• /etc Host specific system configuration (.conf files)

• /lib Essential shared libraries and kernel modules (Typically contain files with version number at the end)

• /media mount points for removable devices

• /mnt mount points

• /opt add on application software packages

• /run Data relevant to running processes

• /sbin essential system binaries

• /srv data for services

• /tmp temporary files (normally flushed when system is rebooted)

1.6. Course Instructors: 9

System-Commands, Release 0.0.1

• /usr secondary hierarchy

– /usr/bin : user commands

– /usr/lib : libraries

– /usr/local : local hierarchy

– /usr/sbin : non vital system binaries

– /usr/share : architecture dependent data

– /usr/include : header files included by c programs

– /usr/src : source code

• /var variable data (/var/log contains logs for various services)

– /var/cache : Application cache data

– /var/lib : Variable state informtion

– /var/local : variable data for /usr/local

– /var/lock : lock files

– /var/log : log files and directories

– /var/run : data relevant to running processes

– /var/tmp : temporary files preserved between reboots

Shareable Unsharable

static /usr and /opt /etc and /boot
variable /var/mail /var/run and /var/lock

1.6.2 Week 2 Notes

• Multiple uses of / is as good as one

– ie : cd usr//////bin will take you to usr/bin

• The root folder / is its own parent

– ie : if you do cd .. within the root directory you stay in the same directory.

• Options / Flags can be written in multiple combinations

– ls -l level1 -di

– ls -d level1 -il

– ls level1 -ldi

– ls -ldi level1

• long formats for options are also available

• ls -a is equivalent to ls --all

10 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

Commands

• ls

– R flag lists all subdirectories recursively

– Passing directory name to ls shows what is within that directory. ie : ls -l level1

– d flag displays details of a folder without traversing inside it. it : ls -ld level1

–

• ll

– a shortcut for the ls -la command

• which

– which command will show the location of the command

– which less will show usr/bin/less

• whatis

– gives a brief description of the command

• alias

– give a nickname to a frequently used command

– usage : alias ll = 'ls -l'

– Just typing alias will show a list of aliases

– alias date = 'date -R'

– If the command is executed by typing the whole path eg : /usr/bin/date the alias is not invoked. (cd
/usr/bin and ./date)

– An alias can be escaped by prefixing a \ ie: \date

• unalias

– used to remove an alias

• rmdir

– removes an empty directory

• ps

– displays current processes

– ps --forest - which process has launched which child process.

– ps -f - displays parent process id

– ps -ef - all the processes running in the operating system now

– PID is the process ID , PPID is the parent process ID.

– PID 1 is /sbin/init

• bc - bench calculator

– exit using Ctrl+D

1.6. Course Instructors: 11

System-Commands, Release 0.0.1

Commands to know contents of a text file

• less

– displays the content in one screen

– ls -l /usr/bin/less shows that the command takes 180KB

• wc

– prints newline,word and byte counts for the file

– the -l flag shows just the number of lines

• head

– head profile displays the first ten lines

– use -n flag to specify the number of lines

• tail

– tail profile displays the last ten lines

– use -n flag to specify number of lines to be displayed

• cat

– in /etc , cat profile would just dump contents on the screen without any further prompts.

– disadvantages : cant move back and forth to view page by page, can’t come out half way through.

– if the file is very long cat is not the best way to look at the content.

• more

– similar to less. Allows page by page viewing

– ls -l /usr/bin/more shows that the command takes 43KB

Knowing more commands

• man

• which

• apropos

– For a keyword it shows you all the commands which have that keyword in the description

– Used to discover new commands

– If you type ls -l /usr/bin/apropos you see that it is a symbolic link to whatis, but the outputs are
different : Why?

– Reason : In Linux every executable will know in what name it has been invoked - can have different be-
haviour depending on the name that invoked it.

– It also has the same output as man -k : Searching for a keyword

• info

– Allows browsing through commands using the cursor

– Can go back using < or ‘shift’+’,’

• whatis

12 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

• help

– displays keywords reserved for the shell being run

• type

– displays what type of command it is

– type type shows that it is a ‘shell built in’ being offered from the shell and not the os

– type ls shows that it is aliased with some option. which ls shows that it is coming from os because there is
an executable available.

Multiple Arguments

•

Recap : Arguments and Options

• Options are enhanced features of the command

• Arguments are specific names of files or directories

• Second arrument behaviour and interpratation of last argument should be seen in the man pages

• Recursion is assumed for mv and not cp

• recursion is assumed for some commands and should be explicitly stated in others

• For copy command recurssion is not assumed

• cp dir1 dir2 need not work. dir1 has 2 files in it.

• cp -r dir1 dir2 works - recurssion is specified explicitly.

• mv dir1 dir3 works - it just renames the directory.

• touch file1 file2 file3 creates all 3 files in one go with identical timestamp.

Links (Hard Links and Soft Links)

• Can determine whether a link is HL or SL by looking at the Inode numbers

– Hard links will have the same inode numbers

– Soft Link will have different inode numbers

– If you delete a certain file using the rm command (rm unlinks the file from the filesystem. the data is still
at the memory location. shred for permanant deletion)

∗ Its hard link will still give you access to the original file data.

∗ Its soft link will not work

• ln -s source destination to create symbolic link. ln -s file1 file2

– file2 is a separate inode entry but it is just a shortcut to file1

– file2 has only 1 hardlink.

• ln source destionation to create a hard link . ln file1 file3

– file1 and file 3 have the same inode number - They are basically the same file.

1.6. Course Instructors: 13

System-Commands, Release 0.0.1

– file1 and file3 have 2 hard links when we do ls -li

• You can create a Soft Link ln -s ../dir/filex fileSL but creating a hard link using ln ../dir/filex
fileHL will not work.

– the first/source-file parameter is interpreted in the case of hard link creation and not in soft link creation

– In the above example, assume that ../dir/filex does not exist.

– soft links useful in version control systems

File Sizes

• ls -s

– file size appears in the first column

• stat

– in /usr/bin we look at stat znew

– Gives information about the size, how many blocks are being occupied

– Here the size is little more than 4kb

– stat zmore shows that it takes less than one block

• du

– in /usr/bin we look at du znew or du -h znew

– Gives information about the size

– Here the size is displayed as 8.0KB since there is a block overflow.

– This means that files that are smaller than the block size will actually take up a whole block

– du -h zmore shows that it occupies one block - around 4.0K

• Role of block size

– explained in stat and du

In-Memory File Systems

• /proc

– Is an older system

– ls -l will display several zero-size files, even though we can read content from them.

– These are only a representation and not real files on the HDD.

– less cpuinfo - information about the cpu

– cat version - information about the OS. Also accessible using uname -a

– cat meminfo - information about the memory - also free -h

– cat partitions - information about the partitions - also df -h

– The kcore file appears to take huge space - Shows maximum virtual memory that the current linux os is
able to handle. 2^47 or 140 TB

• /sys

14 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

– Used from Kernel v2.6 onwards, however information about various processes that are running are still
stored in the /proc directory itself.

– Much more well organised than /proc

– eg : sys/bus/usb/devices/1-1 points to a specific usb device.

• These are directories that are visible in the root folder. They are not on the disk but only in the memory.

• Important system information can be viewed from these directories in a read-only manner.

Shell Variables

• Makes it possible to communicate between 2 processes very efficiently. Need not write and read the filesystem.

• Security Concern : Some information that you write to the filesystem may be visible to other processes.

• Shell variables are available only within the shell or its child processes.

• echo prints strings to screen

– uses space as a delimiter so multiple spaces between words are ignored. For multiple spaces, enclose the
string in quotes.

– can print a multi-line string by using double quotes and not closing it

– ** Difference between ‘ and ” **

– echo $USERNAME and echo "$USERNAME" give the same result but echo '$USERNAME' is not interpreted
to give the value of the shell variable.

– ** Escaping to prevent interpretation **

– echo "username is $USERNAME and host name is \$HOSTNAME"

– Escaping is usefule when you want to pass on the information to a child shell, without it being interpreted
by the shell launching it.

• echo $HOME prints values of variables

– By convention every shell variable starts with a Dollar

• Commonly used shell variables

– $USERNAME eg : echo "User logged into system now is : $USERNAME"

– $HOME

– $HOSTNAME

– $PWD

– $PATH - variable contains a list of directories which will be searched when you type a command. When
ever you type a command the system scans these paths from left to right to see if the command is in the
directory.

• Commands like printenv , env , set to see variables that are already defined

– printenv displays all the shell variables defined in the shell that you are running.

– env gives the same output

– set displays some functions defined to interpret what you are typing on the command line.

• Special Shell Variables

– $0 : name of the shell eg bash or ksh

1.6. Course Instructors: 15

System-Commands, Release 0.0.1

– $$: process ID of the shell

– $? : return code of previously run program

– $- : flags set in the bash shell . The man page for bash shows the meaning of the flags.

• Process Control echo $$

– use of & to run a job in the background

– fg - bring process to foreground

– coproc - run a command while also being able to use the shell

– jobs - list programs running in the background

– top - See programs that are hogging the CPU or memory (refreshed every second)

– kill - kill process owned by you

• Program Exit Codes echo $?

– exit code always has a value between 0 and 255

– 0 : Success

– 1 : Failure

– 2 : Misuse (insufficient permissions)

– 126 : command cannot be executed (usually due to insufficient permissions to execute a file)

– 127 : command not found (usually due to command typos)

– 130 : processes killed using control+c

– 137 : processes killed using kill -9 <pid>

– If the exit code is more than 256 then the exitcode%256 will be reported as the exit code

– exit 0 or exit 1 or exit <n> exits with exit code n

– Used when there are command dependencies (ie: run second command only if first command completes
successfully)

• Flags set in bash echo $-

– h : locate hash commands

– B : braceexpansion enabled

– i : interactive mode

– m : job control enabled (can be taken to bg or fg)

– H : !style history substitution enabled

– s : commands are read from stdin

– c : commands are read from arguments

16 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

Linux Process Management

• sleep command to create processes

– usage : sleep 3 for 3 seconds

• If you have a command running in the Foreground for a long time but you need to write something else on the
command line :

– kill the process

– suspend the process

– run it in the background coproc sleep 10 - When complete it gives a message.

• coproc is a shell keyword. No manual entry for it.

– To learn more about a shell key word use help coproc

– a running background process can be killed by process id (use : ps --forest to find PID and kill -9
<pid>)

• A command followed by an & means that it is being assigned to the background

– Executing the command fg will bring it back to foreground

• jobs is a shell builtin - it lists active jobs in the current shell

• top shows processes taking up maximum cpu and memory. Exit gracefully by pressing Q

• Ctrl+z suspends a process.

– Suspended processes can be seen with jobs

– Can be brought back to foreground using fg command

• Ctrl+c kills a process

• fg is a shell builtin

• bash -c "echo \$-" creates a child shell, gets the value of echo $-, gives the output to the parent shell

– bash -c "echo \$-; ps --forest;" - multiple commands separated by ;

– bash -c "echo \$$; ps --forest ; exit 300" : custom error code mod 256 = 44

• history displays a list of commands that have been run on that computer

– !n executes command line no n displayed by history

– useful for repeating long commands

– The H flag in bash means the history is being recorded

• Brace expansion option B

– if you type echo {a..z} character in the ASCII sequence will be expanded.

– In combination echo {a..d}{a..d} will display all possible combinations of the 2 alphabets.

– * exapnds to all the files in the current directory

– echo D* lists all the files begining with D.

– Examples :

∗ mkdir {1..12}{A..E} or rmdir {1..12}{A..E} or touch {1..12}{A..E}/{1..40}

• ; acts as a separator between individual commands eg : echo hello ; ls

1.6. Course Instructors: 17

System-Commands, Release 0.0.1

REPLIT CODE WITH US

Link to Replit

• date -d "2024-04-01" +%A - Day of the week for given date

• file --mime-type somefile - mime type of a given file

• mkdir {1..12}{A..E}

• rmdir {1..12}{A..E}

• touch {1..12}{A..E}/{1..40}

• lscpu | grep -i "model name"| cut -d ":" -f "2"

1.6.3 Week 3 Notes

Combining Commands and Files

• Executing Multiple Commands

– command1; command2; command3;

∗ Each command will be executed one after the other.

– command1 && command2

∗ command2 will be executed only if command 1 succeeds

∗ If the return code is 0 it is true and if it is greater than 0 it is false

∗ ls && date -Q && wc -l /etc/profile will display the dir listing followed by error that -Q is
invalid; wc is not executed.

– command1 || command2

∗ command2 will not be executed if command1 succeeds

∗ ls /blah || date will display current date after “No such file or directory”

∗ ls || date will display just the directory listing

∗ command2 is like a Plan B if command1 doesn’t succeed.

– Example ls /blah ; date ; wc -l /etc/profile ;

– If we use parenthesis ie (ls /blah ; date ; wc -l /etc/profile ;) the command gets executed
in a subshell and is returned back to the shell we are using.

– We can use echo $BASH_SUBSHELL to return an integer which tells us at what level of execution we are.

∗ (echo $BASH_SUBSHELL) will report a value of 1

∗ (ls; (date; echo $BASH_SUBSHELL)) will report a value of 2

– Launching too many subshells could be expensive computationally.

• File Descriptors

– Every command in linux has 3 file descriptors - stdin (0) , stdout (1), stderr (2).

∗ stdin is a pointer to a stream that is coming from the keyboard or use input

∗ stdout or stderr usually points to the screen where the display or output is made.

∗ the three pointers are looking at only the stream of characters.

18 Chapter 1. System-Commands-course

https://replit.com/team/22t1SystemCommand

System-Commands, Release 0.0.1

∗ they can be directed to a file or a command, or the default behaviour can be left as it is.

– Combining a command and a file

∗ command > file1

· stdout is redirected to file1

· file1 will be created if it does not exist

· if file1 exists, its contents will be overwritten

· example : ls -1 /usr/bin > file1 - displays no output on the screen because there is no error

· ls -1 /blah > file1 - displays an error. file1 is overwritten and is now 0 Bytes.

· hwinfo > hwinfo.txt

· trying this command in a folder where there is no w permissions will generate an error

· The cat command tries to read from the provided file name if not given it tries to read from stdin
(keyboard)

· cat > file1 will allow you to type content. The feature could be used to create text files on the
command line. You can come out using the Ctrl+D option.

· cat file1 displays the content of file1

· cat takes input from the keyboard and displays it on the screen (line by line; when you press enter)
- Finish by pressing Ctrl+D to signify end of file.

∗ command >> file1

· contents will be appended to file1

· new file1 will be created if it does not exist.

· Example : date >> file2 ; wc -l /etc/profile >> file2 ; file /usr/bin/znew
>> file2 ;

· cat >> file1 to append text to a file from command line. Come out using Ctrl + D

Redirections

• combining command and file (continued ..)

– (contd..)

∗ command 2> file1

· redirects stderr to file1

· file1, if it exists, will be overwritten.

· file1 will be created if it does not exist.

· Example ls $HOME /blah 2> error.txt

∗ command > file1 2> file2

· stdout is redirected to file1

· stderr is redirected to file2

· Contents of file1 and file2 will be overwritten.

· The output is in one file and the errors are in another file.

1.6. Course Instructors: 19

System-Commands, Release 0.0.1

· Example : ls $HOME /blah > output.txt 2> error.txt

· ls -R /etc > output.txt 2> error.txt - permission related errors in error.txt

∗ command < file1

· stdin is redirected - a command expecting input from the keyboard could take the input from
a file.

· Example : wc /etc/profile behaves similar to wc < /etc/profile

∗ command > file1 2>&1

· command output will be redirected to file1

· 2> indicates stderr and that is being redirected to &1 (first stream) which is stdout

· contents of file1 will be overwritten

· Example : ls $ HOME /blah > file1 output alone is sent to file1. Error on screen

· Example : ls $ HOME /blah > file1 2>&1 output and error is sent to file1.

∗ command1 | command2 Pipe

· stdout output of command 1 is sent to stdin of command2 as input

· Example ls /usr/bin | wc -l

∗ command1 | command2 > file1

· command1 and command2 are combined and the stdout of command2 is sent to file1. Errors
are still shown on the screen.

· Example ls /usr/bin | wc -l > file1 - file1 has the number of lines counted by wc

∗ command > file1 2> /dev/null

· /dev/null file - A sink for output to be discarded. Like a “black hole”

· We normally don’t do anything with the /dev folder as there are sensitive system files there.

· If you are confident that the script is running well and you do not want to display any error on
the screen, you can redirect the stderr to /dev/null

· stderr is redirected to /dev/null

· Example : ls $HOME /blah > file1 2> /dev/null

· Example : ls -R /etc > file1 2> /dev/null - file1 contains the output except errors

∗ command1 | tee file1

· Used in sitiations where you want to have a copy of the output in a file as well as on the screen.

· The tee command reads from stdin and writes to stdout and file/s.

· Example : ls $HOME | tee file1 also ls $HOME | tee file1 file2 for creating mul-
tiple copies

· diff file1 file2 comapares files line by line

· no output if the files are identical

· Example : ls $HOME /blah | tee file1 file2 | wc -l - Here tee keeps copy of output
in a file and also sends output to wc -l for further processing.

· Example : ls $HOME /blah 2> /dev/null | tee file1 file2 | wc -l to supress er-
rors. Note location of 2> is since the error is generated there.

20 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

Shell Variables - Part 1

• Creation, inspection, modification, lists

• Creating a variable

– myvar="value string"

∗ myvar can’t start with a number, but you can mix alphanumeric and _

∗ No space around the =

∗ "value string" is the number,string or command. Output of a command can be assigned to myvar
by enclosing the command in back-ticks.

• Exporting a variable

– export myvar="value string" or

– myvar="value string" ; export myvar

– This makes the value of the variable available to a shell that is spawned by the current shell.

• Using variable values

– echo $myvar

– echo ${myvar}

∗ can manipulate the value of the variable by inserting some commands within the braces.

– echo "${myvar}_something"

• Removing a variable

– unset myvar

– Removing value of a variable myvar=

• Test is a variable is set

– [[-v myvar]] ; echo $?

∗ 0 : success (variable myvar is set)

∗ 1 : failure (variable myvar is not set)

– [[-z ${myvar+x}]] ; echo $? (the x can be any string)

∗ 0 : success (variable myvar is not set)

∗ 1 : failure (variable myvar is set)

• Substitute default value

– If the variable myvar is not set, use “default” as its default value

– echo ${myvar:-"default"}

∗ if myvar is set display its value

∗ else display “default”

• Set default value

– If the variable myvar is not set then set “default” as its value

– echo ${myvar:="default"}

∗ if myvar is set display its value

1.6. Course Instructors: 21

System-Commands, Release 0.0.1

∗ else set “default” as its value and display its new value

• Reset value if variable is set

– If the variable myvar is set, then set “default” as its value

– echo ${myvar:+"default"}

∗ if myvar is set, then set “default” as its value and display the new value

∗ else display null

• List of variable names

– echo ${!H*}

∗ displays the list of names of shell variables that start with H

• Length of string value

– echo ${#myvar}

∗ Display length of the string value of the variable myvar

∗ if myvar is not set then display 0

• Slice of a string value

– echo ${myvar:5:4} (5 is the offset and 4 is the slice length)

∗ Display 4 characters of the string value of the variable myvar after skipping first 5 characters.

– if the slice length is larget than the length of the string then only what is available in the string will be
displayed.

– the offset can also be negative. However you need to provide a space after the : to avoid confusion with
the earlier usage of the :- symbol. The offset would come from the right hand side of the string.

• Remove matching pattern

– echo ${myvar#pattern} - matches once

– echo ${myvar##pattern} - matches maximum possible

– Whatever is matching the pattern will be removed and the rest of it will be displayed on the screen.

• Keep matching pattern

– echo ${myvar%pattern} - matches once

– echo ${myvar%%pattern} - matches maximum possible

• Replace matching pattern

– echo ${myvar/pattern/string} - match once and replace with string

– echo ${myvar//pattern/string} - match max possible and replace with string

• Replace matching pattern by location

– echo ${myvar/#pattern/string} - match at begining and replace with string

– echo ${myvar/%pattern/string} - match at the end and replace with string

• Changing case

– echo ${myvar,} - Change the first character to lower case.

– echo ${myvar,,} - Change all characters to lower case.

– echo ${myvar^} - Change first character to uppercase

22 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

– echo ${myvar^^} - Change all characters to upper case

– The original value of the variable is not changed. Only the display will be modified as the trigger commands
are within braces.

• Restricting value types

– declare -i myvar - only integers assigned

– declare -l myvar - Only lower case chars assigned

– declare -u myvar - Only upper case chars assigned

– declare -r myvar - Variable is read only

– Once a variable is set as read only you may have to restart the bash to be able to set it

• Removing restrictions

– declare +i myvar - integer restriction removed

– declare +l myvar - lower case chars restriction removed

– declare +u myvar - upper case chars restriction removed

– declare +r myvar - Can’t do once it is read-only

• Indexed arrays

– declare -a arr

∗ Declare arr as an indexed array

– $arr[0]=”value”

∗ Set value of element with index 0 in the array

– echo ${arr[0]}

∗ Value of element with index 0 in the array

– echo ${#arr[@]}

∗ Number of elements in the array. The @ symbol is a wild character to run through all the elements
in the array

– echo ${!arr[@]}

∗ Display all indices used

– echo ${arr[@]}

∗ Display values of all elements of the array

– unset ‘arr[2]’

∗ Delete element with index 2 in the array

– arr+=(“value”)

∗ Append an element with a value to the end of the array

• Associative arrays

– declare -A hash

∗ declare hash as an associative array

– $hash[“a”]=”value”

∗ set the value of element with index a in the array

1.6. Course Instructors: 23

System-Commands, Release 0.0.1

– echo ${hash[“a”]}

∗ value of element with index a in the array

– echo ${#hash[@]}

∗ number of elements in the array

– echo ${!hash[@]}

∗ display all indices used

– echo ${hash[@]}

∗ display values of all elements of the array

– unset ‘hash[“a”]’

∗ delete an element with index a in the array

– Can do everything in the indexed array except append because there is nothing called the end of the array
as there is no sequence for the elements of a hash

• Examples

– true always returns exit code 0

– false always returns exit code 1 (Check with echo $?)

– To check whether a variable is present

∗ [[-v myvar]] ; echo $? returns 1 if the variable is not present in the memory

∗ [[-z ${myvar+x}]] ; echo $? returns 0 if variable is not present and 1 if it is present. x is
a string that will be used as a replacement if the variable was not present.

– Use of Braces

∗ myvar=FileName

∗ echo $myvar

∗ echo "$myvar.txt" prints FileName.txt

∗ echo "$myvar_txt" does not print anything as the variable myvar_txt does not exist

∗ echo "${myvar}_txt" prints Filename_txt

∗ Braces are useful in stating clearly the name of the variable.

∗ Can also be used outside quotes echo ${myvar}

– Does the variable we have created get passed on to the shell or any other program created within the shell

∗ myvar=3.14 ; echo $myvar

∗ bash one more level of bash

∗ ps --forest to show that we are one level below

∗ echo $myvar not present

∗ Use export myvar=3.14 to ensure this variable is available to all spawned sub shells.

∗ Change value of variable within the child shell

∗ modification of value is not reflected in the value of the variable in the parent shell

∗ even if you do export of the variable within the child shell it will not change the value within the
parent shell.

24 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

– Use of back-ticks

∗ mydate=`date` value of mydate will be output of date.

∗ mydate=`echo Sunday that is today` ; echo $mydate

– Manipulations for variables within the shell environment

∗ We would like to have echo display a default value if variable is not available

∗ echo ${myvar:-hello} the - indicates if the value is not present what is the display value

∗ echo ${myvar:-"myvar is not set"}

∗ Set the value if it was not set already

∗ echo ${myvar:=hello} if absent / not set then set it to the value after =

∗ If it is present it will not change

∗ echo ${myvar:?"myvar is not set"} displays a little more information and a debug message.
bash: myvar: myvar is not set

∗ Unset the value of a variable using unset myvar

∗ echo ${myvar:+HELLO} displays the message if the variable is present

– Inspecting all the variables in the shell environment

∗ printenv

∗ env

∗ echo ${!H*} displays the names of variables begining with ‘H’ - ! indicates names of the variables
instead of value.

– Counting characters

∗ mydate=`date` stores the output of the date command in mydate

∗ echo ${#mydate} prints the length of the value present in mydate.

∗ length of a non-existing variable is zero

– Features of using colon : within braces {}

∗ Extracting part of a string from the value of a particular variable.

· echo ${mydate:6:10}

· echo ${myvar:3:3} will print def for myvar=abcdefg ie: 3 characters after the offset (po-
sition 3)

∗ Using negative offset

· echo ${myvar: -3:3} and echo ${myvar: -3:4} will print efg for myvar=abcdefg

· note - is to be preceeded with a blank to avoid confusion

· asking for more characters, will print just what is available

· echo ${myvar: -3:2} will print ef for myvar=abcdefg

∗ Extracting a portion of the date

· Output of date is Tuesday 25 January 2022 09:10:20 PM IST

· Output of date +"%d %B %Y" is 25 January 2022

· if mydate=`date` then echo ${mydate:8:16} will also print 25 January 2022

1.6. Course Instructors: 25

System-Commands, Release 0.0.1

∗ Extracting patterns from a string

· myvar=filename.txt.jpg

· echo ${myvar#*.} minimal matching displays txt.jpg

· myvar=filename.somethingelse.jpeg

· echo ${myvar##*.} maximal matching displays jpeg

· echo ${myvar%*.} displays filename.somethingelse

· the % is used to indicate what has not been matched. (minimal)

· echo ${myvar%%*.} displays filename

· the % is used to indicate what has not been matched. (maximal)

· Can be combined echo ${myvar%%.*}.${myvar##*.} to get filename.jpeg

∗ Replacing what has been matched

∗ Pattern matching in Linux usually goes with a pair of forward slashes.

∗ Convert all e to E in a string

· echo ${myvar/e/E} replaces only the first occurance of e

· echo ${myvar//e/E} replaces all occurances of e

∗ Replace characters at the begining of a string

· echo ${myvar/#f/F} replaces the occurance of f in the begining of the string with F. The
indicates the begining of the string

∗ Replace characters at the end of a string

· echo ${myvar/%g/G} replaces the occurance of g at the end of the string with G. The %
indicates the end of the string.

∗ Replace jpeg with jpg, only if it is at the end of a string

· echo ${myvar/%jpeg/jpg}

∗ Modifying and storing it in a variable

· myvar1=`echo ${myvar//jpeg/jpg}`

∗ Generic command to remove day from date

· echo ${mydate#*day}

∗ Upper case to lower case and vice-versa

· echo ${mydate,} changes first character to lowercase

· echo ${mydate,,} converts all characters to lowercase

· echo ${mydate^} changes first character to uppercase

· echo ${mydate^^} changes all characters to uppercase

∗ Restricting values that can be assigned to shell variables using declare

· declare is a shell builtin

· + to unset a restriction and - to set it (Note : counterintutuve)

· -a for indexed arrays (need not be ordered indexes)

· -A for associative arrays (dictionaries)

26 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

· -i for integers

· -u for uppercase conversion on assignment

· Integer restriction

· declare -i mynum

· mynum=10 will assign 10 to mynum

· mynum=hello will assign 0 to mynum

· lowercase restriciton

· declare -l myvar

· myvar=hello assigns hello to myvar

· myvar=BELLOW converts BELLOW to lowercase and assigns it to myvar.

· removing a restriction

· declare +l myvar

· the value is still contained after removing the restriction but you can now store upper case
characters as well

· declaring a read-only variable

· declare -r myvar

· once a variable has been set as read only, you cannot change its value and you cannot remove
the read-only restriction using +r

· declare +r myvar gives the error bash: declare: myvar: readonly variable

∗ Arrays

· declare -a arr

· arr[0]=Sunday

· arr[1]=Monday

· echo ${arr[0]}

· echo ${arr[1]}

· echo ${#arr[@]} gives number of elements in the array

· echo ${arr[@]} displays all values

· echo ${!arr[@]} displays the indices`

· You can have any index without filling up intermediate indices. Indices are not necessarily
contiguous.

· arr[100]=Friday is also valid

· Removing an element from an array = unset 'arr[100]'

· Appending to an array arr+=(Tuesday)

· Populating an array in one go arr=(Sunday Monday Tuesday) . The indices are sequential

∗ Associative Arrays / Hashes

· declare -A hash

· hash[0]="Amal"

1.6. Course Instructors: 27

System-Commands, Release 0.0.1

· hash["mm12b001"]="Charlie"

· echo ${!hash[@]} to get indices

· echo ${hash["mm12b001"]}

∗ File names in a shell variable

· myfiles=(`ls`)

· echo ${myfiles[@]}

1.6.4 Week 4 Notes

Software Management

• Using Package Management Systems

– Tools for installing, updating, removing and managing software

– Install new / updated software across network

– Package - File look up, both ways

∗ Which files are given by a particular package and which package contains a given file

– Database of packages on the system including versions (compatibility and requirements)

– Dependency checking

– Signature verification tools (to check authenticity of source of the software)

– Tools for building packages (to build packages from soure code - particularly true for kernel modules)

• Package types

– Package

∗ RPM

· Red Hat

· CentOS

· Fedora

· Oracle Linux

· SUSE Enterprise Linux

· OpenSUSE

∗ DEB

· Debian

· Ubuntu

· Mint

· Knoppix

• Commands

– lsb_release -a to find version of Operating System

– When searching for packages for this version of the OS you can search by OS code name eg: focal

28 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

• Architectures

– amd64 | x86_64

– i386 | x86

– arm (RISC5 Sakthi)

– ppc64el | OpenPOWER

– all | noarch |src (not tied to any architecture)

• Commands

– uname -a gives the kernel version and the type of architecture.

• Tools

– Package Type

∗ RPM

· Yellowdog Updater Modifier (yum)

· Red Hat Package Manager (rpm)

· Dandified YUM (dnf)

∗ DEB

· synaptic (GUI)

· aptitude (Command Line)

· Advanced Package Tool (apt)

· dpkg

· dpkg-deb

• Package managemet in Ubuntu using apt

– Inquiring package db

∗ Search packages for a keyword

· apt-cache search keyword

∗ List all packages

· apt-cache pkgnames

· apt-cache pkgnames | sort | less for page by page sorted display

· apt-cache pkgnames nm for all packages starting with nm

∗ Display package records of a package

· apt-cache show -a package

• Package Names

– Package

∗ RPM

· package-version-release.architecture.rpm

∗ DEB

· package_version-revision_architecture.deb

1.6. Course Instructors: 29

System-Commands, Release 0.0.1

· eg : pool/universe/n/nmap/nmap_7.80+dfsg1-2build1_amd64.deb

• Package Priorities

– required : essential to proper functioning of the system

– important : provides functionality that enables the system to run well

– standard : included in a standard system installation

– optional : can omit if you do not have enough storage

– extra : could conflict with packages with higher priority, has specialized requirements, install only if
needed.

– Priority is displayed as extra in the output of apt-cache show nmap or apt-cache show wget for
example.

• Package Sections

– Package Sections for Ubuntu focal

– apt-cache show fortunes shows Section : universe/games

• Checksums

– For a small change in the original file the checksum is very different. This is useful to chack if the original
file has been tampered or not.

– Can be used to verify that nothing has gone wrong to the contents of the file while downloading.

– md5sum

∗ 128 bit string

∗ md5sum filename

– SHA1

∗ 160 bit string

∗ sha1sum filename

– SHA256

∗ 256 bit string

∗ sha256sum filename

4.2

• Who can install packages in Linux OS ?

– administrators

– sudoers in the case of Ubuntu

– Only sudoers can install/upgrade/remove packages

– a sudo command can be executed by those who are listed in /etc/sudoers

– Command sudo cat /etc/sudoers . If the current $USER is not in the sudoers file the incident will be
reported.

– In the file the users listed under # User privilege specification have sudo permission.

– sudo attempts and authentication failures get recorded in /var/log/auth.log. View using sudo tail
-n 100 /var/log/auth.log

30 Chapter 1. System-Commands-course

https://packages.ubuntu.com/focal/

System-Commands, Release 0.0.1

• When installing a package the system knows the website/server from which the packages have to be downloaded

– This information is stored in the folder /etc/apt

– Uncommented lines in the file sources.list have the debian/ubuntu sources

– A directory sources.list.d stores sources for third party software. Allows apt update to know new
versions to download from repositories stored in these files

– Synchronize package overview files - sudo apt-get update fetches updates and keeps them in cache

– Upgrade all installed packages - sudo apt-get upgrade upgrades the packages. It lists how many up-
dates are going to be affected and how much data is going to be downloaded.

– sudo apt autoremove to remove unused packages that were earlier installed to satisfy a particular de-
pendency but are not needed now.

– Install a package - sudo apt-get install packagename

– sudo apt-get remove packagename to remove a particular package

– sudo apt-get reinstall packagename to fix problems caused by accedential file deletions.

– Clean local repository of retreived package files - apt-get clean

– Purge package files from the system - apt-get purge package

• Package management in Ubuntu using dpkg

– Allows installation directly from a .deb file. Package management at a lower level.

– /var/lib/dpkg has some information about the packages

∗ Files - arch,available,status

· cat arch displays the architectures for which packages have been installed on the system -
amd64,i386

· less available displays list of packages with info.

· less status displays if a particular package is installed or not

∗ Folder - info

· contains a set of files for each of the packages that have been installed

· ls wget* will give files with information about wget

· more wget.conffilesgives location of configuration file

· more wget.list displays list of files that would get installed on the system with the package

· more wget.md4sums displays the listof md5sums of the installed files. (Used to catch tam-
pering)

• Using dpkg

– List all packages whose names match the pattern

∗ dpkg -l pattern

– List installed files that came from packages

∗ dpkg -L package

– Display/Report the status of packages

∗ dpkg -s package

– Search installed packages for a file

1.6. Course Instructors: 31

System-Commands, Release 0.0.1

∗ dpkg -S pattern

∗ eg : dpkg -S /usr/bin/perl shows the package from which the executable has come. ie :
perl-base

– To query the dpkg database about all the packages - dpkg-query

∗ Example dpkg-query -W -f='${Section} ${binary:Package}\n' | sort | less

∗ Example where output is filtered dpkg-query -W -f='${Section} ${binary:Package}\n'
| grep shells

• Installing a deb package

– dpkg -i package_version-revision_architecture.deb

– not a good idea since it may have some dependencies that will have to be taken care of manually

– Do not download deb files from unknown sources and install it on the system

– By default use package management pointing to a reliable repository

– Uninstalling packages using dpkg is NOT recommended. You may be removing a package that is required
by many other packages.

• When compatibility issues cannot be resloved one can use snap or docker as alternatives when you are unable
to install a particular version of a package.

4.3

Pattern Matching

• Regular Expressions regex and grep commands

– POSIX standard

∗ IEEE 1003.1-2001 IEEE Standard for IEEE Information Technology – Portable Operating System
Interface (POSIX(TM))

∗ Refer

– POSIX defines regular expressions to be of 2 different types - Basic and Extended.

• Regex

– regex is a pattern template to filter text

– BRE: POSIX Basic Regular Expression engine

– ERE: POSIX Extended Regular Expression engine

• Why learn regex?

– PRocess some input from the user or perform some string operations.

– Languages: Java, Perl, Python, Ruby, . . .

– Tools: grep, sed, awk, . . .

– Applications: MySQL, PostgreSQL, . . .

• Usage

– grep ‘pattern’ filename - to operate on every line in the file

– command | grep ‘pattern’

32 Chapter 1. System-Commands-course

https://standards.ieee.org/standard/1003_1-2001.html

System-Commands, Release 0.0.1

∗ the grep command operates line after line. A common feature in many utilities in linux.

∗ enclose pattern in single quotes

– Default engine: BRE

– Switch to use ERE in 2 ways:

∗ egrep ‘pattern’ filename

∗ grep -E ‘pattern’ filename

Special characters (BRE & ERE)

Character Description
. Any single character except null or newline
* Zero or more of the preceding character / expression
[] Any of the enclosed characters; hyphen (-) indicates character range
^ Anchor for beginning of line or negation of enclosed characters
$ Anchor for end of line
\ Escape special characters

Special characters (BRE)

Character Description
\{n,m\} Range of occurances of preceding pattern at least n and utmost m times
\(\) Grouping of regular expressions

Special characters (ERE)

Character Description
{n,m} Range of occurances of preceding pattern at least n and utmost m times
() Grouping of regular expressions
+ One or more of preceding character / expression
? Zero or one of preceding character / expression
| Logical OR over the patterns

1.6. Course Instructors: 33

System-Commands, Release 0.0.1

Character Classes

Class Description
[[:print:]] Printable
[[:alnum:]] Alphanumeric
[[:alpha:]] Alphabetic
[[:lower:]] Lower case
[[:upper:]] Upper case
[[:digit:]] Decimal digits
[[:blank:]] Space / Tab
[[:space:]] Whitespace
[[:punct:]] Punctuation
[[:xdigit:]] Hexadecimal
[[:graph:]] Non-space
[[:cntrl:]] Control characters

Backreferences - \1 through \9 - \n matches whatever was matched by nth earlier paranthesized subexpression - A
line with two occurances of hello will be matched using: \(hello\).*\1

BRE operator precedence

Highest to Lowest
[..] [==] [::] char collation
\metachar
[] Bracket expansion
() \n subexpresions and backreferences
* { } Repetition of preceding single char regex
Concatenation
^ $ anchors

ERE operator precedence

Highest to Lowest
[..] [==] [::] char collation
\metachar
[] Bracket expansion
() grouping
* + ? { } Repetition of preceding regex
Concatenation
^ $ anchors
| alternation

34 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

Examples using grep

- [Example File names.txt (Containing Names/Roll-No)](Example_Files/names.txt)
- Basic use

- `grep 'Raman' names.txt` matches line with Raman Singh
- `cat names.txt | grep 'ai'` matches line with Snail

- Usage of `.`
- `cat names.txt | grep 'S.n'` matches lines with Singh and Sankaran

- Usage of `$`
- `cat names.txt | grep '.am$' ` matches lines that end with xam

- Escaping a `.`
- `cat names.txt | grep '\.'` matches lines that have a `.`

- Using anchors at the begining
- `cat names.txt | grep '^M'` matches lines begining with m

- Case insensitive matching with the `i` flag
- `cat names.txt | grep -i '^e'` matches lines begining with e or E.

- Word boundaries `\b`
- `cat names.txt | grep 'am\b'` matches lines with words that end with 'am'

- Use of square brackets `[]` to give options
- `cat names.txt | grep 'M[ME]'` matches lines containing 'MM' or 'ME'
- `cat names.txt | grep '\bS.*[mn]'` matches lines containing words begining␣

→˓with S and ending with m or n.
- `cat names.txt | grep '[aeiou][aeiou]'` matches lines that have 2 vowels side␣

→˓by side
- `cat names.txt | grep 'B90[1-4]'` matches words begining with B90 and ending␣

→˓with range 1-4.
- `cat names.txt | grep 'B90[^1-4]'` matches words begining with B90 and ending␣

→˓with characters other than the range 1-4. A hat inside square brackets implies negation
- Specifying occurances using escaped braces

- `cat names.txt | grep 'M\{2\}'` matches lines which have 'MM'
- `cat names.txt | grep 'M\{1,2\}'` matches lines which have one or 2 'M's

- Grouping patterns that are matched using parenthesis. Repeating whatever is matched␣
→˓by using `\1`

- `cat names.txt | grep '\(ma\)'` matches lines containing 'ma'
- `cat names.txt | grep '\(ma\).*\1'` matches a pattern begining with 'ma' and␣

→˓ending with 'ma' eg: U'mair Ahma'd. The `\1` back-references the first parenthesis.
- `cat names.txt | grep '\(.a\).*\1'` matches a pattern like 'Mary Ma'nickam
- `cat names.txt | grep '\(a.\)\{3\}'` matches a pattern like S'agayam'

- Using Extended Regular Expression Engine
- `cat names.txt | egrep 'M+'` will match lines where M occures one or more␣

→˓times.
- `cat names.txt | egrep '^M+'` will match lines where M occures one or more␣

→˓times at the begining of a line.
- `cat names.txt | egrep '^M*'`

- `cat names.txt | egrep '^M*a'` matches lines where 'M' may or may not␣
→˓occur followed by 'a'

- `cat names.txt | egrep '^M.*a'` matches lines where 'M' has to occur␣
→˓at the begining of a line followed by any number of characters and ending with 'a'

- Watch out for the interpretation of `*`
- `cat names.txt | egrep '(ma)+'` 'ma' could occur one or more times.
- `cat names.txt | egrep '(ma)*'` 'ma' could occur zero or more times.

- Use of pipe as an alternation between 2 patterns of strings to be matched
- `cat names.txt | egrep '(ED|ME)'` matches lines containing 'ED' or 'ME'

(continues on next page)

1.6. Course Instructors: 35

System-Commands, Release 0.0.1

(continued from previous page)

- `cat names.txt | egrep '(Anu|Raman)'` matches lines containing 'Anu' or
→˓'Raman'. Length of string on both sides of pipe need not be the same.

- `cat names.txt | egrep '(am|an)$'` matches lines containing 'am' or 'an' at␣
→˓the end.

4.4

More Examples using grep and egrep

- Get package names that are exactly 4 characters long
- `dpkg-query -W -f'${Section} ${binary:Package}\n' | egrep ' .{4}$'`

- Get package names that are from the math section
- `dpkg-query -W -f'${Section} ${binary:Package}\n' | egrep '^math'`

- [Example File chartype.txt (Containing few lines with control character)](Example_
→˓Files/chartype.txt)

- control character inserted using `echo $'\cc' >> chartype.txt`
- get lines that have an alphanumeric character at the begining of the line

- `cat chartype.txt | grep '^[[:alnum:]]'`
- get lines that have digits at the end of the line

- `cat chartype.txt | grep '[[:digit:]]$'`
- get lines that have a ctrl character

- `cat chartype.txt | grep '[[:ctrl:]]'`
- `cat chartype.txt | grep -v '[[:ctrl:]]'` will show the reverse including the␣

→˓empty lines
- get lines that do not have a ctrl character

- `cat chartype.txt | grep '[^[:ctrl:]]'` (This does not work as intended)
- get lines that have printable characters (exclude blank lines)

- `cat chartype.txt | grep '[[:print:]]'`
- get lines that have blank space characters (exclude blank lines)

- `cat chartype.txt | grep '[[:blank:]]'`
- `[[:graph:]]` is used to match any non space character
- To skip blank lines

- `cat chartypes.txt | egrep -v '^$'` Here `-v` excludes and `'^$'` captures␣
→˓empty lines
- Identify a line with a 12 digit number

- `egrep '[[:digit:]]{12}' patterns.txt`
- Identify a line with a 6 digit number (Use word boundaries)

- `egrep '\b[[:digit:]]{6}\b' patterns.txt`
- Match lines containing Roll Number of the form MM22B001

- `egrep '\b[[:alpha:]]{2}[[:digit:]]{2}[[:alpha:]][[:digit:]]{3}\b' patterns.
→˓txt`
- Match urls without the http

- `egrep '\b[[:alnum:]]+\.[[:alnum:]]+\b' patterns.txt`
- **Trimming text**

- top to bottom using `head` and `tail`
- sidways or horizontal trimming of lines using `cut`

- `cut -c 1-4 fields.txt` displays only first 4 characters. Can also use␣
→˓`-4` for begining to 4th place or `2-` to cut from 2nd place to end.

- `cat fields.txt | cut -d " " -f 1` - This uses " " as a delimiter `-d`␣
→˓and prints only the first field `-f 1`

(continues on next page)

36 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

(continued from previous page)

- `cat fields.txt | cut -d ' ' -f 1-2` - to get both fields
- Capture `hello world` from `1234;hello world,line 1`

- `cat fields.txt | cut -d ';' -f 2 | cut -d "," -f 1`
- `egrep ';.*,' fields.txt` (To trim pass the output of grep to␣

→˓`sed`)
- Combining this with top to bottom trimming

- `cat fields.txt | cut -d ';' -f 2 | cut -d "," -f 1 | head -n␣
→˓2 | tail -n 1`

Own experiments using regex

- Get strictly alphanumeric words
- `cat test.txt | egrep '\b([a-z]+[0-9]+|[0-9]+[a-z]+)\b'`

REPLIT Code with Us session

- Getting files with a specific permission pattern from a file
- `cat lsinfo.txt | grep 'rw-r--r--' ;`

- Get all files excluding directories in lsinfo.txt whose last modified date is in␣
→˓January

- `cat lsinfo.txt | grep '^[^d].*Jan'`
- To count the number of lines that starts with a capital letter and contains the word␣
→˓it (case-sensitive)

- `cat twocities.txt | grep -c '^[[:upper:]].*\bit\b' `
- to display all the lines that does not contain the word "we" in it

- `cat twocities.txt | egrep -v '\bwe\b'`
- using cut to display only the countries and its capitals of file.txt in the format␣
→˓Country, Capital (eg in file.txt : India, New Delhi; Asia)

- `cat file.txt | cut -d ';' -f 1 `
- all the countries in the file file.txt sorted alphabetically by name in reverse order

- `cat file.txt | cut -d ',' -f 1 | sort -r`
- cut command to extract the continents (including the one white space in the beginning)␣
→˓of the first 5 lines of file.txt and store it in another file named continent.txt

- `head -n 5 file.txt | cut -d ';' -f 2 > continent.txt `
- list the names of all the c++ files in the current directory which contains a line␣
→˓such that the line starts with the string void main() and ends with the character {.␣
→˓There should be one or more spaces/tabs between the characters { and).

- `egrep '^void[[:space:]]main\(\)[[:space:]]+{$' *.cpp | cut -d '.' -f 1`
- `grep '^void[[:space:]]main()[[:space:]][[:space:]]*{$' *.cpp | cut -d '.' -f␣

→˓1`
- print the count of these files in the following line

- `egrep -l '^void[[:space:]]main\(\)[[:space:]]+{$' *.cpp |tee /dev/tty | wc -l␣
→˓`

- `|tee /dev/tty` is used to print the output to terminal and also pipe the␣
→˓output to the next command.

- `-l` flag for `grep` and `egrep` prints the name of each input file that␣
→˓matches
- command to list all the packages installed on your machine and their versions in the␣
→˓format Package Version in a sorted manner

(continues on next page)

1.6. Course Instructors: 37

System-Commands, Release 0.0.1

(continued from previous page)

- `dpkg-query -W -f='${Package} ${Version}\n' | sort`

1.6.5 Week 5 Notes

Command Line Editors

• Working with text files in the terminal

• Editors

– Line Editors (Present in almost every flavour of UNIX / GNU Linux)

∗ ed

∗ ex (improved version of ed)

– Terminal Editors

∗ pico (Came along with the pine email application)

· nano (Features added to pico)

∗ vi (most popular and complex)

∗ emacs

– GUI Editors

∗ KDE

· kate

· kwrite

∗ GNOME

· gedit

∗ sublime

∗ atom (popular among github users)

∗ brackets (Popular for those writing html code)

– IDE

∗ eclipse

∗ Bluefish

∗ NetBeans

• Features of text editors

– Scrolling , view modes, current position in file

– Navigation (char,word,line,pattern)

– Insert, Replace, Delete

– Cut-Copy-Paste

– Search-Replace

– Language-aware syntax highlighting

38 Chapter 1. System-Commands-course

System-Commands, Release 0.0.1

– Key-maps, init scripts, macros

– Plugins

– Both vi and emacs editors satisfy all the above requirements

ed commands

Action Command
Show the Prompt P
Command Format [addr[,addr]]cmd[params]
Commands for location 2 . $ % + - , ; /RE/
Commands for editing f p a c d i j s m u
Execute a Shell command !command
edit a file e filename
read file contents into buffer r filename
read command output into buffer r !command
write buffer to filename w filename
quit q

Using ed

• man ed doesn’t give much info . Use info ed

• ed test.txt shows a number indicating number of bytes read into memory

• 1 displays the first line

• $ displays the last line

• ,p and %p shows the contents of the entire buffer

• 2,3p range - 2nd to 3rd line

• /hello/ matches and shows first occurance of the pattern

• + and - to scroll by line

• ;p from current position to end of buffer

• . displays the current line

• !date running the date command within ed

• r !date read output of date command to buffer at current position

• w writes the file (saves it)

• d delete current line

• a to append after current line. Press . and enter when done

• s/appended/Appended/ Substitute - Search and replace from current line.

• f shows the name of the file being edited

• p shows the contents of the current line

• j for joining lines . Usage 5,6j to join line 5 and 6

1.6. Course Instructors: 39

System-Commands, Release 0.0.1

• m to move a line to a particular position. Usage m1 to move current line to just below line 1. m0 to move it right
to the top

• u to undo previous change

• To add something to every line %s/\(.*\)/PREFIX \1/

– \1 is the back substitution

– \(.*\) indicates any character that can be matched

– PREFIX is the replacement string

• 3,5s/PREFIX/prefix/ substitutes prefix for PREFIX from line 3 to 5

Commands for editing in ed / ex

Command Action
f show name of f ile being edited
p print the current line
a append at the current line
c change the line
d delete the current line
i insert line at the current position
j join lines
s search for regex pattern
m move current line to position
u undo latest change

1.6.6 Command Line Editors

• nano

• vi

• emacs

1.6.7 Example files used in the lectures

• Week 4

– Lecture 4.3 - names.txt

– Lecture 4.4 - chartype.txt

Note : To download these files to your local system right click on ‘Raw’ and then select ‘Save link as’

40 Chapter 1. System-Commands-course

	System-Commands-course
	Notes from the System Commands course
	Reference Books:
	Reference material:
	Instructors:
	Professor details:
	Course Instructors:
	Week 1 Notes
	Terminal Emulators
	Command Prompt
	Commands and Flags
	File types
	Viewing and Adding to files
	Hard links and Soft links
	Permissions
	Linux Virtual Machine
	ISO
	Hypervisor

	Command Line Environments
	File System of Linux OS

	Week 2 Notes
	Commands
	Commands to know contents of a text file
	Knowing more commands
	Multiple Arguments
	Recap : Arguments and Options

	Links (Hard Links and Soft Links)
	File Sizes
	In-Memory File Systems
	Shell Variables
	Linux Process Management
	REPLIT CODE WITH US

	Week 3 Notes
	Combining Commands and Files
	Redirections
	Shell Variables - Part 1

	Week 4 Notes
	Software Management
	Pattern Matching
	Special characters (BRE & ERE)
	Special characters (BRE)
	Special characters (ERE)
	Character Classes
	BRE operator precedence
	ERE operator precedence
	Examples using grep
	More Examples using grep and egrep
	Own experiments using regex
	REPLIT Code with Us session

	Week 5 Notes
	Command Line Editors
	ed commands
	Using ed
	Commands for editing in ed / ex

	Command Line Editors
	Example files used in the lectures

